A Scalable 2D, Low Power Airflow Probe for Unmanned Vehicle and WSN Applications

  • Paolo BruschiEmail author
  • Andrea Ria
  • Massimo Piotto
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 573)


A compact anemometer, capable of detecting the magnitude and direction of the wind in a plane, is presented. The device constitutes an evolution of a class of sensors that exploit a recently proposed original approach, involving fluidic processing of the pressures induced around a cylinder. A significant size reduction with respect to previous prototypes has been achieved by the use of a tiny differential pressure sensor based on a MEMS System on a Chip. Preliminary characterization performed in a wind tunnel is presented.


  1. 1.
    Pajares, G., Peruzzi, A., Gonzalez-de-Santos, P.: Sensors in agriculture and forestry. Sensors 13, 12132–12139 (2013)CrossRefGoogle Scholar
  2. 2.
    Gao, Y., Ramirez, B.C., Hoff, S.J.: Omnidirectional thermal anemometer for low airspeed and multi-point measurement applications. Comput. Electron. Agric. 127, 439–450 (2016)CrossRefGoogle Scholar
  3. 3.
    López, A., Valera, D.L., Molina-Aiz, F., Peña, A.: Thermography and sonic anemometry to analyze air heaters in mediterranean greenhouses. Sensors 12, 13852–13870 (2012)CrossRefGoogle Scholar
  4. 4.
    Murthy, K.S.R., Rahi, O.P.: A comprehensive review of wind resource assessment. Renew. Sustain. Energy Rev. 72, 1320–1342 (2017)CrossRefGoogle Scholar
  5. 5.
    Karthikeya, B.R., Negi, P.S., Srikanth, N.: Wind resource assessment for urban renewable energy application in Singapore. Renew. Energy 87, 403–414 (2016)CrossRefGoogle Scholar
  6. 6.
    Dobre, A., Arnold, S.J., Smalley, R.J., Boddy, J.W.D., Barlow, J.F., Tomlin, A.S., Belcher, S.E.: Flow field measurements in the proximity of an urban intersection in London, UK. Atmos. Environ. 39, 4647–4657 (2005)CrossRefGoogle Scholar
  7. 7.
    Prudden, S., Fisher, A., Marino, M., Mohamed, A., Watkins, S., Wild, G.: Measuring wind with Small Unmanned Aircraft Systems. J. Wind Eng. Ind. Aerodyn. 176, 197–210 (2018)CrossRefGoogle Scholar
  8. 8.
    Bruschi, P., Piotto, M., Dell’Agnello, F., Ware, J., Roy, N.: Wind speed and direction detection by means of solid-state anemometers embedded on small quadcopters. Procedia Eng. 168, 802–805 (2016)CrossRefGoogle Scholar
  9. 9.
    Fukazawa, Y., Ishida, H.: Estimating gas-source location in outdoor environment using mobile robot equipped with gas sensors and anemometer. In: Proceedings of IEEE Sensors 2009, pp. 1721–1724 (2009)Google Scholar
  10. 10.
    Martínez, D., Clotet, E., Tresanchez, M., Moreno, J., Jiménez-Soto, J.M., Magrans, R., Palacín, J.: First characterization results obtained in a wind tunnel designed for indoor gas source detection. In: Proceedings of Advanced Robotics (ICAR), pp. 629–634 (2015)Google Scholar
  11. 11.
    Seo, W., Baek, K.R.: Indoor dead reckoning localization using ultrasonic anemometer with IMU. J. Sens. 2017, 1–12 (2017)CrossRefGoogle Scholar
  12. 12.
    Han, D., Kim, S., Park, S.: Two-dimensional ultrasonic anemometer using the directivity angle of an ultrasonic sensor. Microelectron. J. 39, 1195–1199 (2008)CrossRefGoogle Scholar
  13. 13.
    Lopes, G.M.G., da Silva Junior, D.P., de França, J.A., de Morais França, M.B., de Souza Ribeiro, L., Moreira, M., Elias, P.: Development of 3-D ultrasonic anemometer with nonorthogonal geometry for the determination of high-intensity winds. IEEE Trans. Instrum. Meas. 66, 2836–2844 (2017)CrossRefGoogle Scholar
  14. 14.
    Bryer, D.W., Pankhurst, R.C.: Pressure-probe methods for determining wind speed and flow direction, pp. 41–74. Campfield Press, St Albans, UK (1971)Google Scholar
  15. 15.
    Hall, B.F., Povey, T.: The Oxford Probe: an open access five-hole probe for aerodynamic measurements. Meas. Sci. Technol. 28(035004), 1–12 (2017)Google Scholar
  16. 16.
    Bruschi, P., Dei, M., Piotto, M.: A low-power 2-D wind sensor based on integrated flow meters. IEEE Sens. J. 9, 1688–1696 (2009)CrossRefGoogle Scholar
  17. 17.
    Piotto, M., Pennelli, G., Bruschi, P.: Fabrication and characterization of a directional anemometer based on a single chip MEMS flow sensor. Microelectron. Eng. 88, 2214–2217 (2011)CrossRefGoogle Scholar
  18. 18.
    Liu, C., Du, L., Zhao, Z.: A directional cylindrical anemometer with four sets of differential pressure sensors. Rev. Sci. Instrum. 87(035105), 1–8 (2016)Google Scholar
  19. 19.
    Bruschi, P., Piotto, M.: Determination of the wind speed and direction by means of fluidic-domain signal processing. IEEE Sens. J. 18, 985–994 (2018)CrossRefGoogle Scholar
  20. 20.
    Piotto, M., Del Cesta, S., Bruschi, P.: A compact, dual channel flow-based differential pressure sensor with mPa resolution and sub-10 mW power consumption. Procedia Eng. 168, 757–761 (2016)CrossRefGoogle Scholar
  21. 21.
    Bruschi, P., Nurra, V., Piotto, M.: A compact package for integrated silicon thermal gas flow meters. Microsyst. Technol. 14, 943–949 (2008)CrossRefGoogle Scholar
  22. 22.
    Bruschi, P., Dei, M., Piotto, M.: A single chip, double channel thermal flow meter. Microsyst. Technol. 15, 1179–1186 (2009)CrossRefGoogle Scholar
  23. 23.
    Piotto, M., Del Cesta, S., Bruschi, P.: Precise measurement of gas volumes by means of low-offset mems flow sensors with μl/min resolution. Sensors 17(2497), 1–13 (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Università di Pisa, Dept. Ingegneria Dell’InformazionePisaItaly

Personalised recommendations