Advertisement

Pancreatic Diseases: The Role of Stem Cells

  • Konstantinos G. Apostolou
Chapter
Part of the Stem Cell Biology and Regenerative Medicine book series (STEMCELL)

Abstract

Mesenchymal stem cells (MSCs) may be isolated from adipose tissue, bone marrow, umbilical cord, and peripheral blood. They are characterized by their innate ability to self-renew as well as differentiate into a variety of cell types. Several studies have demonstrated the innate characteristic of MSCs to home to sites of injury, inflammation, ischemia, as well as to tumors and metastases, including pancreatic gland inflammatory processes and pancreatic carcinoma, which renders them as an attractive option for cell-based therapy of these conditions.

Mesenchymal stem cells may have a crucial role in cell-based therapy of tumors, by specifically targeting certain aspects of tumor’s biology, either by introducing into the tumor genes, which interfere with specific molecular pathways or induce apoptosis, or by introducing specific genes, which contribute to the local activation of systemically administered prodrugs, avoiding thus the side effects, which are caused by the systemic administration of chemotherapy.

Recent studies have demonstrated that the inhibition of the anti-apoptotic X-linked inhibitor of apoptosis protein (XIAP), by using RNA interference, causes an enhanced TRAIL (tumor necrosis factor-related apoptosis-inducing ligand)-induced apoptosis in pancreatic cancer cells, both in vitro and in vivo. Moreover, by combining XIAP inhibition and human MSCs (hMSCs) expressing sTRAIL (the soluble form of TRAIL), the apoptotic activity was not only limited to slowing the tumor growth but also caused tumor’s remission and inhibition of metastatic growth. Alternatively, the production of IFN-b within the tumor site, by genetically modified MSCs, has been shown to suppress tumor growth to a significant extent.

The concept of gene-directed enzyme prodrug therapy, also called suicide gene therapy, in cancer therapy, has been under investigation in recent years. This approach consists of two steps: firstly, the use of genetically engineered MSCs as carriers of a specific gene that encodes a prodrug-activating protein and, secondly, the systematic administration of that particular prodrug that will be metabolized and activated into cytotoxic metabolites within the tumor. Given that angiogenesis is essential for tumor initiation and growth, genetically modified MSCs that express a therapeutic transgene under the control of TIE2 promoter upon reaching the tumor and in the presence of angiopoietin – 2 (ANGPT2) ligand, have been implicated in targeting the angiogenesis pathway, with the herpes simplex virus thymidine kinase (HSV-tk) being the most commonly used transgene. This mechanism of action, combined with the prodrug ganciclovir (GCV), resulted in a significant decrease in the volume of the pancreatic tumor. Alternatively, CC chemokine ligand 5 (CCL5) represents, among other chemokines, an essential factor in the homing process of MSCs to sites of tissue injury, including tumors and their metastases. Genetically modified MSCs to express the HSV-tk transgene under the control of the CCL5 promoter, combined with GCV as a prodrug, resulted in a significant decrease in the growth of the primary pancreatic tumor, as well as in a significant decrease in the incidence of metastatic lesions, in a mouse orthotopic model of pancreatic carcinoma.

In the context of acute pancreatitis, bone marrow MSCs (BM-MSCs) were the most commonly used MSCs, with nearly all studies demonstrating the immunomodulatory effect of BM-MSCs, by downregulating the expression of several pro-inflammatory markers and cytokines. Apart from their immunomodulatory effects, another potential mechanism of action of BM-MSCs is their antioxidant activities, by increasing the expression of glutathione peroxidase and superoxide dismutase. The therapeutic effect of BM-MSCs in acute pancreatitis is not only limited to the pancreatic gland, as BM-MSCs exert also their effects in other organs, including the improvement in the small intestinal capillary endothelial barrier.

On the other hand, only a limited number of studies have investigated the potential effect of MSCs administration for the treatment of chronic pancreatitis. Apart from the immunomodulatory effects of MSCs, all studies demonstrated a decrease both in the pancreatic damage and in the pancreatic fibrosis, following the administration of MSCs. Moreover, the administered BM-MSCs and umbilical cord-derived MSCs exerted an anti-apoptotic effect, by decreasing the apoptotic rate of the pancreatic acinar cells, as has been shown in two studies.

To date, there are certain limitations of cell-based therapies, which need to be carefully considered and require further investigation. First but not least, stem cells for therapeutic application need to meet the standards of Good Manufacturing Practice regulations, posing as important quality criteria, among others, the immunophenotype of the cells, the composition of the culture medium, and the risk for malignant transformation, as well as the aging and the immunosuppressive potential of the manufactured MSCs. Another issue regards the correct amount of MSCs that should be systemically administered, so as to home to the targeted tumor and exert their therapeutic effect. Several studies have focused on that issue, with some studies estimating the necessary amount of administered MSCs to be less than 10% of the targeted tumor mass.

At this point, it should be emphasized that the majority of studies investigating the insertional mutagenesis phenomenon are performed in rodent models, which have a relatively short life span, so that the true mutagenic risk cannot be estimated in the long-term. Therefore, the use of primate animal models, with a relatively longer life span, which may be administered greater amounts of MSCs, and possibly in a repeated fashion, will elucidate the true mutagenic risk of MSCs used for cell-based therapies.

Keywords

Stem cell Pancreatic cancer Metastases Cell-based therapy Gene Pancreatitis Insertional Mutagenesis 

References

  1. 1.
    Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5):E359–86.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin. 2018;68(1):7–30.CrossRefGoogle Scholar
  3. 3.
    Bosetti C, Bertuccio P, Malvezzi M, Levi F, Chatenoud L, Negri E, et al. Cancer mortality in Europe, 2005–2009, and an overview of trends since 1980. Ann Oncol. 2013;24(10):2657–71.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Bosetti C, Bertuccio P, Negri E, La Vecchia C, Zeegers MP, Boffetta P. Pancreatic cancer: overview of descriptive epidemiology. Mol Carcinog. 2012;51(1):3–13.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Herman JM, Swartz MJ, Hsu CC, Winter J, Pawlik TM, Sugar E, et al. Analysis of fluorouracil-based adjuvant chemotherapy and radiation after pancreaticoduodenectomy for ductal adenocarcinoma of the pancreas: results of a large, prospectively collected database at the Johns Hopkins Hospital. J Clin Oncol. 2008;26(21):3503–10.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Finucane MM, Stevens GA, Cowan MJ, Danaei G, Lin JK, Paciorek CJ, et al. National, regional, and global trends in body-mass index since 1980: systematic analysis of health examination surveys and epidemiological studies with 960 country-years and 9.1 million participants. Lancet. 2011;377(9765):557–67.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Conroy T, Desseigne F, Ychou M, Bouche O, Guimbaud R, Becouarn Y, et al. FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N Engl J Med. 2011;364(19):1817–25.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Von Hoff DD, Ervin T, Arena FP, Chiorean EG, Infante J, Moore M, et al. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N Engl J Med. 2013;369(18):1691–703.CrossRefGoogle Scholar
  9. 9.
    Loehrer PJ Sr, Feng Y, Cardenes H, Wagner L, Brell JM, Cella D, et al. Gemcitabine alone versus gemcitabine plus radiotherapy in patients with locally advanced pancreatic cancer: an Eastern Cooperative Oncology Group trial. J Clin Oncol. 2011;29(31):4105–12.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Moorcraft SY, Khan K, Peckitt C, Watkins D, Rao S, Cunningham D, et al. FOLFIRINOX for locally advanced or metastatic pancreatic ductal adenocarcinoma: the Royal Marsden experience. Clin Colorectal Cancer. 2014;13(4):232–8.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Neoptolemos JP, Stocken DD, Friess H, Bassi C, Dunn JA, Hickey H, et al. A randomized trial of chemoradiotherapy and chemotherapy after resection of pancreatic cancer. N Engl J Med. 2004;350(12):1200–10.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Neoptolemos JP, Stocken DD, Bassi C, Ghaneh P, Cunningham D, Goldstein D, et al. Adjuvant chemotherapy with fluorouracil plus folinic acid vs gemcitabine following pancreatic cancer resection: a randomized controlled trial. JAMA. 2010;304(10):1073–81.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Oettle H, Post S, Neuhaus P, Gellert K, Langrehr J, Ridwelski K, et al. Adjuvant chemotherapy with gemcitabine vs observation in patients undergoing curative-intent resection of pancreatic cancer: a randomized controlled trial. JAMA. 2007;297(3):267–77.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Oettle H, Neuhaus P, Hochhaus A, Hartmann JT, Gellert K, Ridwelski K, et al. Adjuvant chemotherapy with gemcitabine and long-term outcomes among patients with resected pancreatic cancer: the CONKO-001 randomized trial. JAMA. 2013;310(14):1473–81.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Regine WF, Winter KA, Abrams R, Safran H, Hoffman JP, Konski A, et al. Fluorouracil-based chemoradiation with either gemcitabine or fluorouracil chemotherapy after resection of pancreatic adenocarcinoma: 5-year analysis of the U.S. Intergroup/RTOG 9704 phase III trial. Ann Surg Oncol. 2011;18(5):1319–26.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Bruce WR, Van Der Gaag H. A quantitative assay for the number of murine lymphoma cells capable of proliferation in vivo. Nature. 1963;199:79–80.PubMedCrossRefGoogle Scholar
  17. 17.
    Park CH, Bergsagel DE, McCulloch EA. Mouse myeloma tumor stem cells: a primary cell culture assay. J Natl Cancer Inst. 1971;46(2):411–22.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Li C, Heidt DG, Dalerba P, Burant CF, Zhang L, Adsay V, et al. Identification of pancreatic cancer stem cells. Cancer Res. 2007;67(3):1030–7.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A. 2003;100(7):3983–8.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, et al. Identification of human brain tumour initiating cells. Nature. 2004;432(7015):396–401.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M, Peschle C, et al. Identification and expansion of human colon-cancer-initiating cells. Nature. 2007;445(7123):111–5.PubMedCrossRefGoogle Scholar
  22. 22.
    Jordan CT. Cancer stem cells: controversial or just misunderstood? Cell Stem Cell. 2009;4(3):203–5.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Hermann PC, Huber SL, Herrler T, Aicher A, Ellwart JW, Guba M, et al. Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell. 2007;1(3):313–23.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Li X, Zhao H, Gu J, Zheng L. Prognostic value of cancer stem cell marker CD133 expression in pancreatic ductal adenocarcinoma (PDAC): a systematic review and meta-analysis. Int J Clin Exp Pathol. 2015;8(10):12084–92.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Maeda S, Shinchi H, Kurahara H, Mataki Y, Maemura K, Sato M, et al. CD133 expression is correlated with lymph node metastasis and vascular endothelial growth factor-C expression in pancreatic cancer. Br J Cancer. 2008;98(8):1389–97.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Li C, Wu JJ, Hynes M, Dosch J, Sarkar B, Welling TH, et al. c-Met is a marker of pancreatic cancer stem cells and therapeutic target. Gastroenterology. 2011;141(6):2218–2227 e2215.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Challen GA, Little MH. A side order of stem cells: the SP phenotype. Stem Cells. 2006;24(1):3–12.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Hirschmann-Jax C, Foster AE, Wulf GG, Nuchtern JG, Jax TW, Gobel U, et al. A distinct “side population” of cells with high drug efflux capacity in human tumor cells. Proc Natl Acad Sci U S A. 2004;101(39):14228–33.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Goodell MA, Brose K, Paradis G, Conner AS, Mulligan RC. Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med. 1996;183(4):1797–806.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Chuthapisith S, Eremin JM, Eremin O. Predicting response to neoadjuvant chemotherapy in breast cancer: molecular imaging, systemic biomarkers and the cancer metabolome (review). Oncol Rep. 2008;20(4):699–703.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Steiniger SC, Coppinger JA, Kruger JA, Yates J 3rd, Janda KD. Quantitative mass spectrometry identifies drug targets in cancer stem cell-containing side population. Stem Cells. 2008;26(12):3037–46.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Hong SP, Wen J, Bang S, Park S, Song SY. CD44-positive cells are responsible for gemcitabine resistance in pancreatic cancer cells. Int J Cancer. 2009;125(10):2323–31.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Rasheed ZA, Yang J, Wang Q, Kowalski J, Freed I, Murter C, et al. Prognostic significance of tumorigenic cells with mesenchymal features in pancreatic adenocarcinoma. J Natl Cancer Inst. 2010;102(5):340–51.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Green MR. Targeting targeted therapy. N Engl J Med. 2004;350(21):2191–3.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Corsten MF, Shah K. Therapeutic stem-cells for cancer treatment: hopes and hurdles in tactical warfare. Lancet Oncol. 2008;9(4):376–84.PubMedCrossRefGoogle Scholar
  36. 36.
    Shah K. Mesenchymal stem cells engineered for cancer therapy. Adv Drug Deliv Rev. 2012;64(8):739–48.PubMedCrossRefGoogle Scholar
  37. 37.
    Yip S, Shah K. Stem-cell based therapies for brain tumors. Curr Opin Mol Ther. 2008;10(4):334–42.PubMedGoogle Scholar
  38. 38.
    Sagar J, Chaib B, Sales K, Winslet M, Seifalian A. Role of stem cells in cancer therapy and cancer stem cells: a review. Cancer Cell Int. 2007;7:9.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Spring H, Schuler T, Arnold B, Hammerling GJ, Ganss R. Chemokines direct endothelial progenitors into tumor neovessels. Proc Natl Acad Sci U S A. 2005;102(50):18111–6.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Cihova M, Altanerova V, Altaner C. Stem cell based cancer gene therapy. Mol Pharm. 2011;8(5):1480–7.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Klopp AH, Spaeth EL, Dembinski JL, Woodward WA, Munshi A, Meyn RE, et al. Tumor irradiation increases the recruitment of circulating mesenchymal stem cells into the tumor microenvironment. Cancer Res. 2007;67(24):11687–95.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Studeny M, Marini FC, Champlin RE, Zompetta C, Fidler IJ, Andreeff M. Bone marrow-derived mesenchymal stem cells as vehicles for interferon-beta delivery into tumors. Cancer Res. 2002;62(13):3603–8.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Studeny M, Marini FC, Dembinski JL, Zompetta C, Cabreira-Hansen M, Bekele BN, et al. Mesenchymal stem cells: potential precursors for tumor stroma and targeted-delivery vehicles for anticancer agents. J Natl Cancer Inst. 2004;96(21):1593–603.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Dwyer RM, Khan S, Barry FP, O’Brien T, Kerin MJ. Advances in mesenchymal stem cell-mediated gene therapy for cancer. Stem Cell Res Ther. 2010;1(3):25.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Hodgkinson CP, Gomez JA, Mirotsou M, Dzau VJ. Genetic engineering of mesenchymal stem cells and its application in human disease therapy. Hum Gene Ther. 2010;21(11):1513–26.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Kim SU, Jeung EB, Kim YB, Cho MH, Choi KC. Potential tumor-tropic effect of genetically engineered stem cells expressing suicide enzymes to selectively target invasive cancer in animal models. Anticancer Res. 2011;31(4):1249–58.PubMedPubMedCentralGoogle Scholar
  47. 47.
    Kucerova L, Altanerova V, Matuskova M, Tyciakova S, Altaner C. Adipose tissue-derived human mesenchymal stem cells mediated prodrug cancer gene therapy. Cancer Res. 2007;67(13):6304–13.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Morizono K, De Ugarte DA, Zhu M, Zuk P, Elbarbary A, Ashjian P, et al. Multilineage cells from adipose tissue as gene delivery vehicles. Hum Gene Ther. 2003;14(1):59–66.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Meyerrose TE, De Ugarte DA, Hofling AA, Herrbrich PE, Cordonnier TD, Shultz LD, et al. In vivo distribution of human adipose-derived mesenchymal stem cells in novel xenotransplantation models. Stem Cells. 2007;25(1):220–7.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Chamberlain G, Fox J, Ashton B, Middleton J. Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells. 2007;25(11):2739–49.PubMedCrossRefGoogle Scholar
  51. 51.
    Sakaguchi Y, Sekiya I, Yagishita K, Muneta T. Comparison of human stem cells derived from various mesenchymal tissues: superiority of synovium as a cell source. Arthritis Rheum. 2005;52(8):2521–9.PubMedCrossRefGoogle Scholar
  52. 52.
    Altaner C. Prodrug cancer gene therapy. Cancer Lett. 2008;270(2):191–201.PubMedCrossRefGoogle Scholar
  53. 53.
    Moniri MR, Sun XY, Rayat J, Dai D, Ao Z, He Z, et al. TRAIL-engineered pancreas-derived mesenchymal stem cells: characterization and cytotoxic effects on pancreatic cancer cells. Cancer Gene Ther. 2012;19(9):652–8.PubMedCrossRefGoogle Scholar
  54. 54.
    Zischek C, Niess H, Ischenko I, Conrad C, Huss R, Jauch KW, et al. Targeting tumor stroma using engineered mesenchymal stem cells reduces the growth of pancreatic carcinoma. Ann Surg. 2009;250(5):747–53.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Menon LG, Picinich S, Koneru R, Gao H, Lin SY, Koneru M, et al. Differential gene expression associated with migration of mesenchymal stem cells to conditioned medium from tumor cells or bone marrow cells. Stem Cells. 2007;25(2):520–8.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Karp JM, Leng Teo GS. Mesenchymal stem cell homing: the devil is in the details. Cell Stem Cell. 2009;4(3):206–16.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Lyden D, Hattori K, Dias S, Costa C, Blaikie P, Butros L, et al. Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat Med. 2001;7(11):1194–201.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Beckermann BM, Kallifatidis G, Groth A, Frommhold D, Apel A, Mattern J, et al. VEGF expression by mesenchymal stem cells contributes to angiogenesis in pancreatic carcinoma. Br J Cancer. 2008;99(4):622–31.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Sasportas LS, Kasmieh R, Wakimoto H, Hingtgen S, van de Water JA, Mohapatra G, et al. Assessment of therapeutic efficacy and fate of engineered human mesenchymal stem cells for cancer therapy. Proc Natl Acad Sci U S A. 2009;106(12):4822–7.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Imitola J, Raddassi K, Park KI, Mueller FJ, Nieto M, Teng YD, et al. Directed migration of neural stem cells to sites of CNS injury by the stromal cell-derived factor 1alpha/CXC chemokine receptor 4 pathway. Proc Natl Acad Sci U S A. 2004;101(52):18117–22.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Schmidt NO, Przylecki W, Yang W, Ziu M, Teng Y, Kim SU, et al. Brain tumor tropism of transplanted human neural stem cells is induced by vascular endothelial growth factor. Neoplasia. 2005;7(6):623–9.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Son BR, Marquez-Curtis LA, Kucia M, Wysoczynski M, Turner AR, Ratajczak J, et al. Migration of bone marrow and cord blood mesenchymal stem cells in vitro is regulated by stromal-derived factor-1-CXCR4 and hepatocyte growth factor-c-met axes and involves matrix metalloproteinases. Stem Cells. 2006;24(5):1254–64.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Andoh A, Takaya H, Saotome T, Shimada M, Hata K, Araki Y, et al. Cytokine regulation of chemokine (IL-8, MCP-1, and RANTES) gene expression in human pancreatic periacinar myofibroblasts. Gastroenterology. 2000;119(1):211–9.PubMedCrossRefGoogle Scholar
  64. 64.
    Azenshtein E, Luboshits G, Shina S, Neumark E, Shahbazian D, Weil M, et al. The CC chemokine RANTES in breast carcinoma progression: regulation of expression and potential mechanisms of promalignant activity. Cancer Res. 2002;62(4):1093–102.PubMedGoogle Scholar
  65. 65.
    Soria G, Ben-Baruch A. The inflammatory chemokines CCL2 and CCL5 in breast cancer. Cancer Lett. 2008;267(2):271–85.PubMedCrossRefGoogle Scholar
  66. 66.
    Ruster B, Gottig S, Ludwig RJ, Bistrian R, Muller S, Seifried E, et al. Mesenchymal stem cells display coordinated rolling and adhesion behavior on endothelial cells. Blood. 2006;108(12):3938–44.PubMedCrossRefGoogle Scholar
  67. 67.
    Jin H, Aiyer A, Su J, Borgstrom P, Stupack D, Friedlander M, et al. A homing mechanism for bone marrow-derived progenitor cell recruitment to the neovasculature. J Clin Invest. 2006;116(3):652–62.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Motaln H, Schichor C, Lah TT. Human mesenchymal stem cells and their use in cell-based therapies. Cancer. 2010;116(11):2519–30.PubMedCrossRefGoogle Scholar
  69. 69.
    Nakamizo A, Marini F, Amano T, Khan A, Studeny M, Gumin J, et al. Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas. Cancer Res. 2005;65(8):3307–18.PubMedCrossRefGoogle Scholar
  70. 70.
    Mohr A, Albarenque SM, Deedigan L, Yu R, Reidy M, Fulda S, et al. Targeting of XIAP combined with systemic mesenchymal stem cell-mediated delivery of sTRAIL ligand inhibits metastatic growth of pancreatic carcinoma cells. Stem Cells. 2010;28(11):2109–20.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Vogler M, Durr K, Jovanovic M, Debatin KM, Fulda S. Regulation of TRAIL-induced apoptosis by XIAP in pancreatic carcinoma cells. Oncogene. 2007;26(2):248–57.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Vogler M, Walczak H, Stadel D, Haas TL, Genze F, Jovanovic M, et al. Targeting XIAP bypasses Bcl-2-mediated resistance to TRAIL and cooperates with TRAIL to suppress pancreatic cancer growth in vitro and in vivo. Cancer Res. 2008;68(19):7956–65.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Vogler M, Walczak H, Stadel D, Haas TL, Genze F, Jovanovic M, et al. Small molecule XIAP inhibitors enhance TRAIL-induced apoptosis and antitumor activity in preclinical models of pancreatic carcinoma. Cancer Res. 2009;69(6):2425–34.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Lu YR, Yuan Y, Wang XJ, Wei LL, Chen YN, Cong C, et al. The growth inhibitory effect of mesenchymal stem cells on tumor cells in vitro and in vivo. Cancer Biol Ther. 2008;7(2):245–51.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Sun B, Roh KH, Park JR, Lee SR, Park SB, Jung JW, et al. Therapeutic potential of mesenchymal stromal cells in a mouse breast cancer metastasis model. Cytotherapy. 2009;11(3):289–98.. 281 p following 298PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Kidd S, Caldwell L, Dietrich M, Samudio I, Spaeth EL, Watson K, et al. Mesenchymal stromal cells alone or expressing interferon-beta suppress pancreatic tumors in vivo, an effect countered by anti-inflammatory treatment. Cytotherapy. 2010;12(5):615–25.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Greco O, Dachs GU. Gene directed enzyme/prodrug therapy of cancer: historical appraisal and future prospectives. J Cell Physiol. 2001;187(1):22–36.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Bi WL, Parysek LM, Warnick R, Stambrook PJ. In vitro evidence that metabolic cooperation is responsible for the bystander effect observed with HSV tk retroviral gene therapy. Hum Gene Ther. 1993;4(6):725–31.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Gagandeep S, Brew R, Green B, Christmas SE, Klatzmann D, Poston GJ, et al. Prodrug-activated gene therapy: involvement of an immunological component in the “bystander effect”. Cancer Gene Ther. 1996;3(2):83–8.PubMedPubMedCentralGoogle Scholar
  80. 80.
    Kroemer G, Galluzzi L, Kepp O, Zitvogel L. Immunogenic cell death in cancer therapy. Annu Rev Immunol. 2013;31:51–72.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Kuriyama S, Tsujinoue H, Yoshiji H. Immune response to suicide gene therapy. Methods Mol Med. 2004;90:353–69.PubMedPubMedCentralGoogle Scholar
  82. 82.
    Touati W, Tran T, Seguin J, Diry M, Flinois JP, Baillou C, et al. A suicide gene therapy combining the improvement of cyclophosphamide tumor cytotoxicity and the development of an anti-tumor immune response. Curr Gene Ther. 2014;14(3):236–46.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Majumdar MK, Keane-Moore M, Buyaner D, Hardy WB, Moorman MA, McIntosh KR, et al. Characterization and functionality of cell surface molecules on human mesenchymal stem cells. J Biomed Sci. 2003;10(2):228–41.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Guo X, Evans TR, Somanath S, Armesilla AL, Darling JL, Schatzlein A, et al. In vitro evaluation of cancer-specific NF-kappaB-CEA enhancer-promoter system for 5-fluorouracil prodrug gene therapy in colon cancer cell lines. Br J Cancer. 2007;97(6):745–54.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Nyati MK, Sreekumar A, Li S, Zhang M, Rynkiewicz SD, Chinnaiyan AM, et al. High and selective expression of yeast cytosine deaminase under a carcinoembryonic antigen promoter-enhancer. Cancer Res. 2002;62(8):2337–42.PubMedPubMedCentralGoogle Scholar
  86. 86.
    Conrad C, Husemann Y, Niess H, von Luettichau I, Huss R, Bauer C, et al. Linking transgene expression of engineered mesenchymal stem cells and angiopoietin-1-induced differentiation to target cancer angiogenesis. Ann Surg. 2011;253(3):566–71.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Niess H, Bao Q, Conrad C, Zischek C, Notohamiprodjo M, Schwab F, et al. Selective targeting of genetically engineered mesenchymal stem cells to tumor stroma microenvironments using tissue-specific suicide gene expression suppresses growth of hepatocellular carcinoma. Ann Surg. 2011;254(5):767–74.. discussion 774–765PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Huang H, Bhat A, Woodnutt G, Lappe R. Targeting the ANGPT-TIE2 pathway in malignancy. Nat Rev Cancer. 2010;10(8):575–85.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Herbst RS, Hong D, Chap L, Kurzrock R, Jackson E, Silverman JM, et al. Safety, pharmacokinetics, and antitumor activity of AMG 386, a selective angiopoietin inhibitor, in adult patients with advanced solid tumors. J Clin Oncol. 2009;27(21):3557–65.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Yadav D, Lowenfels AB. The epidemiology of pancreatitis and pancreatic cancer. Gastroenterology. 2013;144(6):1252–61.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Chan YC, Leung PS. Acute pancreatitis: animal models and recent advances in basic research. Pancreas. 2007;34(1):1–14.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Ishibashi T, Zhao H, Kawabe K, Oono T, Egashira K, Suzuki K, et al. Blocking of monocyte chemoattractant protein-1 (MCP-1) activity attenuates the severity of acute pancreatitis in rats. J Gastroenterol. 2008;43(1):79–85.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Frossard JL, Steer ML, Pastor CM. Acute pancreatitis. Lancet. 2008;371(9607):143–52.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Norman JG, Fink GW, Messina J, Carter G, Franz MG. Timing of tumor necrosis factor antagonism is critical in determining outcome in murine lethal acute pancreatitis. Surgery. 1996;120(3):515–21.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Huang LY, Chen P, Xu LX, Zhou YF, Zhang YP, Yuan YZ. Fractalkine upregulates inflammation through CX3CR1 and the Jak-Stat pathway in severe acute pancreatitis rat model. Inflammation. 2012;35(3):1023–30.PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Huang L, Ma J, Tang Y, Chen P, Zhang S, Zhang Y, et al. siRNA-based targeting of fractalkine overexpression suppresses inflammation development in a severe acute pancreatitis rat model. Int J Mol Med. 2012;30(3):514–20.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Working Group IAPAPAAPG. IAP/APA evidence-based guidelines for the management of acute pancreatitis. Pancreatology. 2013;13(4 Suppl 2):e1–15.Google Scholar
  98. 98.
    Ranson JH, Rifkind KM, Roses DF, Fink SD, Eng K, Spencer FC. Prognostic signs and the role of operative management in acute pancreatitis. Surg Gynecol Obstet. 1974;139(1):69–81.PubMedPubMedCentralGoogle Scholar
  99. 99.
    Ranson JH, Pasternack BS. Statistical methods for quantifying the severity of clinical acute pancreatitis. J Surg Res. 1977;22(2):79–91.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Knaus WA, Draper EA, Wagner DP, Zimmerman JE. APACHE II: a severity of disease classification system. Crit Care Med. 1985;13(10):818–29.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Wilson C, Heath DI, Imrie CW. Prediction of outcome in acute pancreatitis: a comparative study of APACHE II, clinical assessment and multiple factor scoring systems. Br J Surg. 1990;77(11):1260–4.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Halonen KI, Pettila V, Leppaniemi AK, Kemppainen EA, Puolakkainen PA, Haapiainen RK. Multiple organ dysfunction associated with severe acute pancreatitis. Crit Care Med. 2002;30(6):1274–9.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Vincent JL, de Mendonca A, Cantraine F, Moreno R, Takala J, Suter PM, et al. Use of the SOFA score to assess the incidence of organ dysfunction/failure in intensive care units: results of a multicenter, prospective study. Working group on “sepsis-related problems” of the European Society of Intensive Care Medicine. Crit Care Med. 1998;26(11):1793–800.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Balthazar EJ, Robinson DL, Megibow AJ, Ranson JH. Acute pancreatitis: value of CT in establishing prognosis. Radiology. 1990;174(2):331–6.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Eachempati SR, Hydo LJ, Barie PS. Severity scoring for prognostication in patients with severe acute pancreatitis: comparative analysis of the Ranson score and the APACHE III score. Arch Surg. 2002;137(6):730–6.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Liu TH, Kwong KL, Tamm EP, Gill BS, Brown SD, Mercer DW. Acute pancreatitis in intensive care unit patients: value of clinical and radiologic prognosticators at predicting clinical course and outcome. Crit Care Med. 2003;31(4):1026–30.PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Sheth SG, Conwell DL, Whitcomb DC, Alsante M, Anderson MA, Barkin J, et al. Academic pancreas centers of excellence: guidance from a multidisciplinary chronic pancreatitis working group at PancreasFest. Pancreatology. 2017;17(3):419–30.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Whitcomb DC, Shimosegawa T, Chari ST, Forsmark CE, Frulloni L, Garg P, et al. International consensus statements on early chronic Pancreatitis. Recommendations from the working group for the international consensus guidelines for chronic pancreatitis in collaboration with The International Association of Pancreatology, American Pancreatic Association, Japan Pancreas Society, PancreasFest Working Group and European Pancreatic Club. Pancreatology. 2018.Google Scholar
  109. 109.
    Linard C, Busson E, Holler V, Strup-Perrot C, Lacave-Lapalun JV, Lhomme B, et al. Repeated autologous bone marrow-derived mesenchymal stem cell injections improve radiation-induced proctitis in pigs. Stem Cells Transl Med. 2013;2(11):916–27.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Tsai PC, Fu TW, Chen YM, Ko TL, Chen TH, Shih YH, et al. The therapeutic potential of human umbilical mesenchymal stem cells from Wharton’s jelly in the treatment of rat liver fibrosis. Liver Transpl. 2009;15(5):484–95.PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Song L, Yang YJ, Dong QT, Qian HY, Gao RL, Qiao SB, et al. Atorvastatin enhance efficacy of mesenchymal stem cells treatment for swine myocardial infarction via activation of nitric oxide synthase. PLoS One. 2013;8(5):e65702.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Li L, Zhang Y, Li Y, Yu B, Xu Y, Zhao S, et al. Mesenchymal stem cell transplantation attenuates cardiac fibrosis associated with isoproterenol-induced global heart failure. Transpl Int. 2008;21(12):1181–9.PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Jung KH, Song SU, Yi T, Jeon MS, Hong SW, Zheng HM, et al. Human bone marrow-derived clonal mesenchymal stem cells inhibit inflammation and reduce acute pancreatitis in rats. Gastroenterology. 2011;140(3):998–1008.PubMedCrossRefGoogle Scholar
  114. 114.
    Jung KH, Yi T, Son MK, Song SU, Hong SS. Therapeutic effect of human clonal bone marrow-derived mesenchymal stem cells in severe acute pancreatitis. Arch Pharm Res. 2015;38(5):742–51.PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Qian D, Gong J, He Z, Hua J, Lin S, Xu C, et al. Bone marrow-derived mesenchymal stem cells repair necrotic pancreatic tissue and promote angiogenesis by secreting cellular growth factors involved in the SDF-1 alpha/CXCR4 Axis in rats. Stem Cells Int. 2015;2015:306836.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    He Z, Hua J, Qian D, Gong J, Lin S, Xu C, et al. Intravenous hMSCs ameliorate acute pancreatitis in mice via secretion of tumor necrosis factor-alpha stimulated gene/protein 6. Sci Rep. 2016;6:38438.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Yin G, Hu G, Wan R, Yu G, Cang X, Ni J, et al. Role of bone marrow mesenchymal stem cells in L-arg-induced acute pancreatitis: effects and possible mechanisms. Int J Clin Exp Pathol. 2015;8(5):4457–68.PubMedPubMedCentralGoogle Scholar
  118. 118.
    Zhao H, He Z, Huang D, Gao J, Gong Y, Wu H, et al. Infusion of bone marrow mesenchymal stem cells attenuates experimental severe acute pancreatitis in rats. Stem Cells Int. 2016;2016:7174319.PubMedPubMedCentralGoogle Scholar
  119. 119.
    Chen Z, Lu F, Fang H, Huang H. Effect of mesenchymal stem cells on renal injury in rats with severe acute pancreatitis. Exp Biol Med (Maywood). 2013;238(6):687–95.CrossRefGoogle Scholar
  120. 120.
    Tu XH, Song JX, Xue XJ, Guo XW, Ma YX, Chen ZY, et al. Role of bone marrow-derived mesenchymal stem cells in a rat model of severe acute pancreatitis. World J Gastroenterol. 2012;18(18):2270–9.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Qu B, Chu Y, Zhu F, Wang B, Liu T, Yu B, et al. Granulocyte colony-stimulating factor enhances the therapeutic efficacy of bone marrow mesenchymal stem cell transplantation in rats with experimental acute pancreatitis. Oncotarget. 2017;8(13):21305–14.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Qian D, Wei G, Xu C, He Z, Hua J, Li J, et al. Bone marrow-derived mesenchymal stem cells (BMSCs) repair acute necrotized pancreatitis by secreting microRNA-9 to target the NF-kappaB1/p50 gene in rats. Sci Rep. 2017;7(1):581.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Yin G, Hu G, Wan R, Yu G, Cang X, Xiong J, et al. Role of microvesicles from bone marrow mesenchymal stem cells in acute pancreatitis. Pancreas. 2016;45(9):1282–93.PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Meng HB, Gong J, Zhou B, Hua J, Yao L, Song ZS. Therapeutic effect of human umbilical cord-derived mesenchymal stem cells in rat severe acute pancreatitis. Int J Clin Exp Pathol. 2013;6(12):2703–12.PubMedPubMedCentralGoogle Scholar
  125. 125.
    Wexler SA, Donaldson C, Denning-Kendall P, Rice C, Bradley B, Hows JM. Adult bone marrow is a rich source of human mesenchymal ‘stem’ cells but umbilical cord and mobilized adult blood are not. Br J Haematol. 2003;121(2):368–74.PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Lu F, Wang F, Chen Z, Huang H. Effect of mesenchymal stem cells on small intestinal injury in a rat model of acute necrotizing pancreatitis. Stem Cell Res Ther. 2017;8(1):12.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Yang B, Bai B, Liu CX, Wang SQ, Jiang X, Zhu CL, et al. Effect of umbilical cord mesenchymal stem cells on treatment of severe acute pancreatitis in rats. Cytotherapy. 2013;15(2):154–62.PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    Hua J, He ZG, Qian DH, Lin SP, Gong J, Meng HB, et al. Angiopoietin-1 gene-modified human mesenchymal stem cells promote angiogenesis and reduce acute pancreatitis in rats. Int J Clin Exp Pathol. 2014;7(7):3580–95.PubMedPubMedCentralGoogle Scholar
  129. 129.
    Kawakubo K, Ohnishi S, Fujita H, Kuwatani M, Onishi R, Masamune A, et al. Effect of fetal membrane-derived mesenchymal stem cell transplantation in rats with acute and chronic pancreatitis. Pancreas. 2016;45(5):707–13.PubMedCrossRefPubMedCentralGoogle Scholar
  130. 130.
    Kim HW, Song WJ, Li Q, Han SM, Jeon KO, Park SC, et al. Canine adipose tissue-derived mesenchymal stem cells ameliorate severe acute pancreatitis by regulating T cells in rats. J Vet Sci. 2016;17(4):539–48.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Chiesa S, Morbelli S, Morando S, Massollo M, Marini C, Bertoni A, et al. Mesenchymal stem cells impair in vivo T-cell priming by dendritic cells. Proc Natl Acad Sci U S A. 2011;108(42):17384–9.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Schrepfer S, Deuse T, Reichenspurner H, Fischbein MP, Robbins RC, Pelletier MP. Stem cell transplantation: the lung barrier. Transplant Proc. 2007;39(2):573–6.PubMedCrossRefGoogle Scholar
  133. 133.
    Lee RH, Pulin AA, Seo MJ, Kota DJ, Ylostalo J, Larson BL, et al. Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6. Cell Stem Cell. 2009;5(1):54–63.PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Qin T, Liu CJ, Zhang HW, Pan YF, Tang Q, Liu JK, et al. Effect of the IkBalpha mutant gene delivery to mesenchymal stem cells on rat chronic pancreatitis. Genet Mol Res. 2014;13(1):371–85.PubMedCrossRefGoogle Scholar
  135. 135.
    Zhou CH, Li ML, Qin AL, Lv SX, Wen T, Zhu XY, et al. Reduction of fibrosis in dibutyltin dichloride-induced chronic pancreatitis using rat umbilical mesenchymal stem cells from Wharton’s jelly. Pancreas. 2013;42(8):1291–302.PubMedCrossRefPubMedCentralGoogle Scholar
  136. 136.
    Wuchter P, Bieback K, Schrezenmeier H, Bornhauser M, Muller LP, Bonig H, et al. Standardization of good manufacturing practice-compliant production of bone marrow-derived human mesenchymal stromal cells for immunotherapeutic applications. Cytotherapy. 2015;17(2):128–39.PubMedCrossRefGoogle Scholar
  137. 137.
    Kern S, Eichler H, Stoeve J, Kluter H, Bieback K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells. 2006;24(5):1294–301.PubMedCrossRefPubMedCentralGoogle Scholar
  138. 138.
    Zhang ZX, Guan LX, Zhang K, Zhang Q, Dai LJ. A combined procedure to deliver autologous mesenchymal stromal cells to patients with traumatic brain injury. Cytotherapy. 2008;10(2):134–9.PubMedCrossRefPubMedCentralGoogle Scholar
  139. 139.
    Li DS, Warnock GL, Tu HJ, Ao Z, He Z, Lu H, et al. Do immunotherapy and beta cell replacement play a synergistic role in the treatment of type 1 diabetes? Life Sci. 2009;85(15–16):549–56.PubMedCrossRefGoogle Scholar
  140. 140.
    Hung SC, Deng WP, Yang WK, Liu RS, Lee CC, Su TC, et al. Mesenchymal stem cell targeting of microscopic tumors and tumor stroma development monitored by noninvasive in vivo positron emission tomography imaging. Clin Cancer Res. 2005;11(21):7749–56.PubMedCrossRefPubMedCentralGoogle Scholar
  141. 141.
    Kim SW, Kim SJ, Park SH, Yang HG, Kang MC, Choi YW, et al. Complete regression of metastatic renal cell carcinoma by multiple injections of engineered mesenchymal stem cells expressing dodecameric TRAIL and HSV-TK. Clin Cancer Res. 2013;19(2):415–27.PubMedCrossRefPubMedCentralGoogle Scholar
  142. 142.
    Djouad F, Plence P, Bony C, Tropel P, Apparailly F, Sany J, et al. Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood. 2003;102(10):3837–44.PubMedCrossRefPubMedCentralGoogle Scholar
  143. 143.
    Djouad F, Bony C, Apparailly F, Louis-Plence P, Jorgensen C, Noel D. Earlier onset of syngeneic tumors in the presence of mesenchymal stem cells. Transplantation. 2006;82(8):1060–6.PubMedCrossRefPubMedCentralGoogle Scholar
  144. 144.
    Orimo A, Gupta PB, Sgroi DC, Arenzana-Seisdedos F, Delaunay T, Naeem R, et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell. 2005;121(3):335–48.PubMedCrossRefPubMedCentralGoogle Scholar
  145. 145.
    Pike-Overzet K, van der Burg M, Wagemaker G, van Dongen JJ, Staal FJ. New insights and unresolved issues regarding insertional mutagenesis in X-linked SCID gene therapy. Mol Ther. 2007;15(11):1910–6.PubMedCrossRefPubMedCentralGoogle Scholar
  146. 146.
    Zhang TY, Huang B, Yuan ZY, Hu YL, Tabata Y, Gao JQ. Gene recombinant bone marrow mesenchymal stem cells as a tumor-targeted suicide gene delivery vehicle in pulmonary metastasis therapy using non-viral transfection. Nanomedicine. 2014;10(1):257–67.PubMedCrossRefGoogle Scholar
  147. 147.
    Coffelt SB, Marini FC, Watson K, Zwezdaryk KJ, Dembinski JL, LaMarca HL, et al. The pro-inflammatory peptide LL-37 promotes ovarian tumor progression through recruitment of multipotent mesenchymal stromal cells. Proc Natl Acad Sci U S A. 2009;106(10):3806–11.PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Karnoub AE, Dash AB, Vo AP, Sullivan A, Brooks MW, Bell GW, et al. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature. 2007;449(7162):557–63.PubMedCrossRefGoogle Scholar
  149. 149.
    Zhu W, Xu W, Jiang R, Qian H, Chen M, Hu J, et al. Mesenchymal stem cells derived from bone marrow favor tumor cell growth in vivo. Exp Mol Pathol. 2006;80(3):267–74.PubMedCrossRefGoogle Scholar
  150. 150.
    Spaeth EL, Dembinski JL, Sasser AK, Watson K, Klopp A, Hall B, et al. Mesenchymal stem cell transition to tumor-associated fibroblasts contributes to fibrovascular network expansion and tumor progression. PLoS One. 2009;4(4):e4992.PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Marofi, et al. Mesenchymal stromal/stem cells: a new era in the cell-based targeted gene therapy of cancer. Front Immunol. 2017;8:1770. https://doi.org/10.3389/fimmu.2017.01770.CrossRefPubMedPubMedCentralGoogle Scholar
  152. 152.
    Williams, et al. Nitroreductase gene-directed enzyme prodrug therapy: insights and advances toward clinical utility. Biochem J. 2015;471:131–53. https://doi.org/10.1042/BJ20150650.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Konstantinos G. Apostolou
    • 1
  1. 1.Department of SurgeryCentral Clinic of AthensAthensGreece

Personalised recommendations