Advertisement

Defining Higher Order Learning Objectives for Software Development that Align with Employability Requirements

  • Veronika ThurnerEmail author
  • Axel Böttcher
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 916)

Abstract

Experience shows that many students of STEM-subjects have difficulties in acquiring skills on higher levels of Bloom’s revised taxonomy for learning objectives [1]. However, it is crucial to foster these skills in our students, as they will be required from our graduates in professional life, where it is not sufficient to just “know” about things, but necessary to actively use the acquired skills, both systematically and creatively, to solve problems that were hitherto unknown. As a basis for devising teaching and learning methods that systematically develop these high level skills, we define learning objectives for some of those competences that will be required of our graduates. These learning objectives do not only address technical competences. Rather, they also comprise those non-technical key competences that are essential for developing the required technical competences in the first place, and which later on are necessary for applying and enhancing these technical competences professionally throughout one’s working life.

Keywords

Software development Employability Learning objectives 

References

  1. 1.
    Anderson, L.W., Krathwohl, D.R., Airasian, P.W., Cruikshank, K.A., Mayer, R.E., Pintrich, P.R., Raths, J., Wittrock, M.C.: A Taxonomy for Learning, Teaching, and Assessing: A Revision of Bloom’s Taxonomy of Educational Objectives, 1st edn. Longman, New York (2001)Google Scholar
  2. 2.
    Bloom, B.S., Engelhart, M.B., Furst, E.J., Hill, W.H., Krathwohl, D.R.: Taxonomy of Educational Objectives: The Classification of Educational Goals. David McKay Company, New York (1956)Google Scholar
  3. 3.
    Böttcher, A., Schlierkamp, K., Thurner, V., Zehetmeier, D.: Teaching abstraction. In: 2nd International Conference on Higher Education Advances (HEAd 2016), pp. 357–364 (2016)Google Scholar
  4. 4.
    Böttcher, A., Thurner, V., Müller, G.: Kompetenzorientierte Lehre im software engineering. In: Software Engineering im Unterricht der Hochschulen (SEUH), pp. 33–39 (2011)Google Scholar
  5. 5.
    Chur, D.: Schlüsselkompetenzen – Herausforderung für die (Aus-)Bildungsqualität an Hochschulen. In: Stifterverband für die Wissenschaft (ed.) Schlüsselkompetenzen und Beschäftigungsfähigkeit – Konzepte für die Vermittlung überfachlicher Qualifikationen an Hochschulen, pp. 16–19. Essen, Juni (2004)Google Scholar
  6. 6.
    Hristova, M., Misra, A., Rutter, M., Mercuri, R.: Identifying and correcting java programming errors for introductory computer science students. In: Proceedings of the 34th SIGCSE Technical Symposium on Computer Science Education, SIGCSE 2003, pp. 153–156. ACM, New York (2003)Google Scholar
  7. 7.
    Humbert, L.: Didaktik der Informatik mit praxiserprobtem Unterrichtsmaterial. B.G. Teubner, 2 edn. (2006)Google Scholar
  8. 8.
    Kaczmarczyk, L.C., Petrick, E.R., East, J.P., Herman, G.L.: Identifying student misconceptions of programming. In: Proceedings of the 41st ACM Technical Symposium on Computer Science Education, SIGCSE 2010, pp. 107–111. ACM, New York (2010)Google Scholar
  9. 9.
    Schaeper, H., Briedis, K.: Kompetenzen von Hochschulabsolventinnen und Hochschulabsolventen, berufliche Anforderungen und Folgerungen für die Hochschulreform. HIS-Kurzinformation (2004)Google Scholar
  10. 10.
    Schott, F., Ghanbari, S.A.: Modellierung, Vermittlung und Diagnostik der Kompetenz kompetenzorientiert zu unterrichten - wissenschaftliche Herausforderung und ein praktischer Lösungsversuch. Lehrerbildung auf dem Prüfstand 2(1), 10–27 (2009)Google Scholar
  11. 11.
    Sirkiä, T., Sorva, J.: Exploring programming misconceptions: An analysis of student mistakes in visual program simulation exercises. In: Proceedings of the 12th Koli Calling International Conference on Computing Education Research, Koli Calling 2012, pp. 19–28. ACM, New York (2012)Google Scholar
  12. 12.
    In der Smitten, S., Jaeger, M.: Kompetenzerwerb von Studierenden und Profilbildung an Hochschulen. In: HIS-Tagung 2009 – Studentischer Kompetenzerwerb im Kontext von Hochschulsteuerung und Profilbildung, pp. 1–26. HIS, Hannover (2009)Google Scholar
  13. 13.
    Sorva, J.: The same but different – students’ understandings of primitive and object variables. In: Proceedings of the 8th International Conference on Computing Education Research, Koli 2008, pp. 5–15. ACM, New York (2008)Google Scholar
  14. 14.
    Zehetmeier, D., Böttcher, A., Brüggemann-Klein, A., Thurner, V.: Development of a classification scheme for errors observed in the process of computer programming education. In: International Conference on Higher Education Advances (HEAd), pp. 475–484 (2015)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Computer Science and MathematicsMunich University of Applied SciencesMunichGermany

Personalised recommendations