Advertisement

Accessibility Evaluation of Mobile Applications for Monitoring Air Quality

  • Patricia Acosta-VargasEmail author
  • Rasa Zalakeviciute
  • Sergio Luján-Mora
  • Wilmar Hernandez
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 918)

Abstract

This research evaluates the accessibility of mobile applications with the Accessibility Scanner tool. The evaluated applications are related to the quality of the air we breathe. As a matter of fact, nowadays there exists a high number of free applications for mobile devices that provide information about the level of contamination that is affecting cities, as well as the concentration of each significant pollutant. However, not all those mobile applications are accessible. This study uses Accessibility Scanner of Google, applying the accessibility guidelines for mobile applications of Web Content Accessibility Guidelines 2.1. In this study, 10 mobile applications were evaluated, and it can be said that the obtained results can be seen as a useful, practical example of how to develop inclusive mobile applications.

Keywords

Accessibility evaluation Air quality Mobile applications Web Content Accessibility Guidelines 2.1 (WCAG 2.1) 

Notes

Acknowledgments

The authors thank CEDIA for funding this study through the project “CEPRA-XII-2018-13” and the UDLA project “ERI.WHP.18.01”.

References

  1. 1.
    United Nations (Department of Economic and Social Affairs/Population Division 2017): World Population Prospects: The 2017 Revision, Key Findings and Advance Tables. ESA/P/WP/248. https://esa.un.org/unpd/wpp/Publications/
  2. 2.
    World Health Organization (WHO): Air pollution levels rising in many of the world’s poorest cities. http://www.who.int/mediacentre/news/releases/2016/air-pollution-rising/en/
  3. 3.
    Limb, M.: Half of wealthy and 98% of poorer cities breach air quality guidelines. Br. Med. J. 353 (2016).  https://doi.org/10.1136/bmj.i2730
  4. 4.
    World Health Organization (WHO): 7 million premature deaths annually linked to air pollution. http://www.who.int/mediacentre/news/releases/2014/air-pollution/en/
  5. 5.
    Environmental Protection Agency (EPA): Are you at risk from particles? How can particles affect your health? http://depts.washington.edu/wildfire/resources/particles.pdf
  6. 6.
    Pope III, C., Dockery, D.: Health effects of fine particulate air pollution: lines that connect. Air Waste Manag. Assoc. 56, 709–742 (2006).  https://doi.org/10.1080/10473289.2006.10464545CrossRefGoogle Scholar
  7. 7.
    Brook, R.D., Rajagopalan, S., Pope III, C.A., Brook, J.R., Bhatnagar, A., Diez-Roux, A.V., Holguin, F., Hong, Y., Luepker, R.V., Mittleman, M.A., Peters, A., Siscovick, D., Smith, S.C.J., Whitsel, L., Kaufman, J.D.: Particulate matter air pollution and cardiovascular disease: an update to the scientific statement from the American Heart Association. Circulation 121, 2331–2378 (2010).  https://doi.org/10.1161/cir.0b013e3181dbece1CrossRefGoogle Scholar
  8. 8.
    Adar, S.D., Sheppard, L., Vedal, S., Polak, J.F., Sampson, P.D., Diez Roux, A.V., Budoff, M., Jacobs, D.R.J., Barr, R.G., Watson, K., Kaufman, J.D.: Fine particulate air pollution and the progression of carotid intima-medial thickness: a prospective cohort study from the multi-ethnic study of atherosclerosis and air pollution. PLoS Med. 10 (2013).  https://doi.org/10.1371/journal.pmed.1001430CrossRefGoogle Scholar
  9. 9.
    Künzli, N., Kaiser, R., Medina, S., Studnicka, M., Chanel, O., Filliger, P., Herry, M., Horak, F., Puybonnieux-Texier, V., Quénel, P., Schneider, J., Seethaler, R., Vergnaud, J.C., Sommer, H.: Public-health impact of outdoor and traffic-related air pollution: a European assessment. Lancet 356, 795–801 (2000).  https://doi.org/10.1016/S0140-6736(00)02653-2CrossRefGoogle Scholar
  10. 10.
    Acosta-Vargas, P., Luján-Mora, S., Acosta, T., Salvador-Ullauri, L.: Toward a combined method for evaluation of web accessibility. In: Advances in Intelligent Systems and Computing, pp. 602–613 (2018)CrossRefGoogle Scholar
  11. 11.
    World Wide Web Consortium (W3C): Web Content Accessibility Guidelines (WCAG) 2.1. https://www.w3.org/TR/WCAG21/
  12. 12.
    Vaupel, S., Taentzer, G., Gerlach, R., Guckert, M.: Model-driven development of mobile applications for Android and iOS supporting role-based app variability. Softw. Syst. Model. 17, 35–63 (2018).  https://doi.org/10.1007/s10270-016-0559-4CrossRefGoogle Scholar
  13. 13.
    Choudhary, S.R., Gorla, A., Orso, A.: Automated test input generation for Android: are we there yet? In: Proceedings - 2015 30th IEEE/ACM International Conference on Automated Software Engineering, ASE 2015, pp. 429–440 (2016)Google Scholar
  14. 14.
    Zein, S., Salleh, N., Grundy, J.: A systematic mapping study of mobile application testing techniques. J. Syst. Softw. 117, 334–356 (2016).  https://doi.org/10.1016/j.jss.2016.03.065CrossRefGoogle Scholar
  15. 15.
    World Wide Web Consortium: Mobile Accessibility: How WCAG 2.0 and Other W3C/WAI Guidelines Apply to Mobile. https://www.w3.org/TR/mobile-accessibility-mapping/
  16. 16.
  17. 17.
    Mobile Accessibility at W3C | Web Accessibility Initiative (WAI) | W3C. https://www.w3.org/WAI/standards-guidelines/mobile/
  18. 18.
    Jabangwe, R., Edison, H., Duc, A.N.: Software engineering process models for mobile app development: a systematic literature review. J. Syst. Softw. 145, 98–111 (2018).  https://doi.org/10.1016/j.jss.2018.08.028CrossRefGoogle Scholar
  19. 19.
    Krainz, E., Miesenberger, K., Feiner, J.: Can we improve app accessibility with advanced development methods? In: International Conference on Computers Helping People with Special Needs, pp. 64–70. Springer (2018)Google Scholar
  20. 20.
    Damaceno, R.J.P., Braga, J.C., Mena-Chalco, J.P.: Mobile device accessibility for the visually impaired: problems mapping and recommendations. Univ. Access Inf. Soc. 17, 421–435 (2018).  https://doi.org/10.1007/s10209-017-0540-1CrossRefGoogle Scholar
  21. 21.
    Eler, M.M., Rojas, J.M., Ge, Y., Fraser, G.: Automated accessibility testing of mobile apps. In: Proceedings - 2018 IEEE 11th International Conference on Software Testing, Verification and Validation, ICST 2018, pp. 116–126 (2018)Google Scholar
  22. 22.
    Ross, A.S., Zhang, X., Wobbrock, J.O., Fogarty, J.: Examining image-based button labeling for accessibility in Android apps through large-scale analysis. In: ACM SIGACCESS Conference on Computers and Accessibility (ASSETS 2018) (2018)Google Scholar
  23. 23.
    El-Glaly, Y.N., Peruma, A., Krutz, D.E., Hawker, J.S.: Apps for everyone: mobile accessibility learning modules. ACM Inroads 9, 30–33 (2018).  https://doi.org/10.1145/3182184CrossRefGoogle Scholar
  24. 24.
    Carvalho, L.P., Freire, A.P.: Native or web-hybrid apps? An analysis of the adequacy for accessibility of Android interface components used with screen readers. In: Proceedings of 16th Brazilian Symposium on Human Factors in Computing Systems, pp. 362–371 (2017).  https://doi.org/10.1145/3160504.3160511
  25. 25.
    Pichiliani, M., Hirata, C.: Evaluation of the Android accessibility API recognition rate towards a better user experience. In: International Conference on Universal Access in Human-Computer Interaction, pp. 340–349. Springer, Cham (2015)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Patricia Acosta-Vargas
    • 1
    Email author
  • Rasa Zalakeviciute
    • 1
  • Sergio Luján-Mora
    • 2
  • Wilmar Hernandez
    • 1
  1. 1.Intelligent and Interactive Systems LabUniversidad de Las AméricasQuitoEcuador
  2. 2.Department of Software and Computing SystemsUniversity of AlicanteAlicanteSpain

Personalised recommendations