Gesture Elicitation and Usability Testing for an Armband Interacting with Netflix and Spotify

  • Robin Guérit
  • Alessandro Cierro
  • Jean VanderdoncktEmail author
  • Jorge Luis Pérez-Medina
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 918)


Controlling home entertainment devices, like music and video, via an armband could free the user from using remote controls, but assessing their overall usability with mid-air and micro-gestures still represents an open research question today. For this purpose, this paper reports on results gained by jointly conducting and comparing two studies involving participants using a Thalmic Myo armband to control a NetFlix SmartTV and Spotify: (1) a gesture elicitation study to explore a richer set of user-defined gestures, to measure their effectiveness and the user subjective satisfaction of gesture interaction; (2) a System Usability Scale (SUS) to assess the overall usability of this setup and the subjective satisfaction for user-defined gestures.


Gesture elicitation study Mid-air gestures Myo armband Netflix SmartTV TV interaction Wearable computing 


  1. 1.
    Bangor, A., Kortum, P., Miller, J.: Determining what individual SUS scores mean: adding an adjective rating scale. J. Usability Stud. 4(3), 114–123 (2009)Google Scholar
  2. 2.
    Bergold, J., Thomas, S.: Participatory research methods: a methodological approach in motion. Historical Social Research, pp. 191–222 (2012)Google Scholar
  3. 3.
    Brooke, J., et al.: SUS-A quick and dirty usability scale. In: Usability Evaluation in Industry, vol. 189, no. 194, pp. 4–7 (1996)Google Scholar
  4. 4.
    Chan, E., Seyed, T., Stuerzlinger, W., Yang, X.D., Maurer, F.: User elicitation on single-hand microgestures. In: Proceedings of the Conference on Human Factors in Computing Systems, pp. 3403–3414. ACM (2016)Google Scholar
  5. 5.
    Dalmazzo, D., Ramirez, R.: Air violin: a machine learning approach to fingering gesture recognition. In: 1st ACM SIGCHI International Workshop on Multimodal Interaction for Education, pp. 63–66. ACM (2017)Google Scholar
  6. 6.
    Dong, H., Danesh, A., Figueroa, N., El Saddik, A.: An elicitation study on gesture preferences and memorability toward a practical hand-gesture vocabulary for smart televisions. IEEE Access 3, 543–555 (2015)CrossRefGoogle Scholar
  7. 7.
    Hewitt, J.: The myo gesture-control armband sense your muscle’s movements. ExtremeTech (online magazine) (2013)Google Scholar
  8. 8.
    Kerber, F., Puhl, M., Krüger, A.: User-independent real-time hand gesture recognition based on surface electromyography. In: 19th International Conference on HCI with Mobile Devices and Services, p. 36. ACM (2017)Google Scholar
  9. 9.
    Korkman, M.: NEPSY. A developmental neuropsychological assessment. Test materials and manual (1998)Google Scholar
  10. 10.
    Koskimäki, H., Siirtola, P., Röning, J.: Myogym: introducing an open gym data set for activity recognition collected using myo armband. In: International Joint Conference on Pervasive and Ubiquitous Computing, pp. 537–546. ACM (2017)Google Scholar
  11. 11.
    Lewis, J.R.: IBM computer usability satisfaction questionnaires: psychometric evaluation and instructions for use. Int. J. Hum. Comput. Interact. 7(1), 57–78 (1995)CrossRefGoogle Scholar
  12. 12.
    Montero, F., López-Jaquero, V., Vanderdonckt, J., González, P., Lozano, M., Limbourg, Q.: Solving the mapping problem in user interface design by seamless integration in idealxml. In: Gilroy, S.W., Harrison, M.D. (eds.) Interactive Systems. Design, Specification, and Verification, pp. 161–172. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Montoya, M., Henao, O., Muñoz, J.: Muscle fatigue detection through wearable sensors: a comparative study using the myo armband. In: 18th International Conference on Human Computer Interaction, p. 30. ACM (2017)Google Scholar
  14. 14.
    Munroe, C., Meng, Y., Yanco, H., Begum, M.: Augmented reality eyeglasses for promoting home-based rehabilitation for children with cerebral palsy. In: The Eleventh ACM/IEEE International Conference on Human Robot Interaction, p. 565. IEEE Press (2016)Google Scholar
  15. 15.
    Rajavenkatanarayanan, A., Surathi, Y.V., Babu, A.R., Papakostas, M.: Myodrive: a new way of interacting with mobile devices. In: 9th ACM International Conference on PErvasive Technologies Related to Assistive Environments, p. 18. ACM (2016)Google Scholar
  16. 16.
    Sathiyanarayanan, M., Rajan, S.: Myo armband for physiotherapy healthcare: a case study using gesture recognition application. In: 8th International Conference on Communication Systems and Networks. pp. 1–6. IEEE (2016)Google Scholar
  17. 17.
    Tsai, W.L., Hsu, Y.L., Lin, C.P., Zhu, C.Y., Chen, Y.C., Hu, M.C.: Immersive virtual reality with multimodal interaction and streaming technology. In: 18th ACM International Conference on Multimodal Interaction, p. 416. ACM (2016)Google Scholar
  18. 18.
    Vanderdonckt, J., Roselli, P., Medina, J.L.P.: !FTL, an articulation-invariant stroke gesture recognizer with controllable position, scale, and rotation invariances. In: 20th International Conference on Multimodal Interaction, ICMI 2018, Boulder, CO, USA, October 16–20, 2018Google Scholar
  19. 19.
    Vatavu, R.D.: A comparative study of user-defined handheld vs. freehand gestures for home entertainment environments. J. Ambient Intell. Smart Environ. 5(2), 187–211 (2013)Google Scholar
  20. 20.
    Vatavu, R.D., Wobbrock, J.O.: Formalizing agreement analysis for elicitation studies: new measures, significance test, and toolkit. In: 33rd ACM Conference on Human Factors in Computing Systems, pp. 1325–1334. ACM (2015)Google Scholar
  21. 21.
    Wobbrock, J.O., Aung, H.H., Rothrock, B., Myers, B.A.: Maximizing the guessability of symbolic input. In: CHI’05 Extended Abstracts on Human Factors in Computing Systems, pp. 1869–1872. ACM (2005)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Université catholique de Louvain (UCL)Louvain-la-NeuveBelgium
  2. 2.Intelligent and Interactive Systems Lab (SI2 Lab)Universidad de Las Américas (UDLA)QuitoEcuador

Personalised recommendations