Advertisement

Performance Data Analysis for Parallel Processing Using Bigdata Distribution

  • Iván Ortiz-GarcésEmail author
  • Nicolás Yánez
  • W. Villegas-Ch
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 918)

Abstract

The following document presents metrics and pointers for datacenter performance evaluation, whose production workflow will be improved by a parallel computing software, each cluster instance was virtualized providing for scalability and availability for every person who access to the system at different locations. Apache spark will be used as parallel processing distribution through different scenarios, each one will handle workload on physical and virtual nodes, after the collection of time response a comparations will be realized for determinate if the parallel distribution is an ideal solution for guarantee processing requirements.

Keywords

Performance analysis Scalability Parallel computing Quality of services 

References

  1. 1.
    Hennessy, J., Patterson, D.: Computer architecture: a quantitative approximation, San Francisco, pp. 3–5 (2007)Google Scholar
  2. 2.
    Ghodsi, A., Joseph, A., Randy, K., Scott, S., Ion, S.: A platform for fine-grained resource sharing in the data center. In: IEEE Access, California, pp. 1–12 (2009)Google Scholar
  3. 3.
    Asanovic, K., Bodik, R., Catanzaro, B., Gebis, J., Husbands, P., Keutzer, K., Patterson, D., Plishker, W., Shalf, J., Webb, S., Yelick, K.W.: The Landscape of Parallel Computing Research: A View from Berkeley. Universidad de Berkeley, California (2006)Google Scholar
  4. 4.
    Oliker, L., LiGerd, X., Biswas, H.: Ordering Unstructured Meshes for sparce matrix computations on leading parallel system. Berkeley, California (2000)Google Scholar
  5. 5.
    Langer, U., Paule, P.: Numerical Methods and Symbols of Scientific Computing: Progress and Prospects. Mathematical Computing Institute, Australia (2011)Google Scholar
  6. 6.
    Intel IT Center: Planning Guide: Getting Started with Hadoop. Steps IT Managers Can Take to Move Forward with Big Data Analytics (2012). http://www.intel.com/content/dam/www/public/us/en/documents/guides/getting-started-with-hadoop-planning-guide.Pdf
  7. 7.
    Singh, S., Singh, N.: Big Data analytics. In: International Conference on Communication, Information & Computing Technology Mumbai India. IEEE (2011)Google Scholar
  8. 8.
    Kossmann, D., Kraska, T., Loesing, S.: An evaluation of alternative architectures for transaction processing in the cloud. In: Proceedings of the 2010 International Conference on Management of Data, pp. 579–590. ACM (2010)Google Scholar
  9. 9.
    Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters. Commun. ACM 51(1), 107–113 (2008)CrossRefGoogle Scholar
  10. 10.
    Xu, Y., Kostamaa, P., Gao, L.: Integrating hadoop and parallel DBMs. In: Proceedings of the 2010 International Conference on Management of Data, pp. 969–974. ACM (2010)Google Scholar
  11. 11.
    Jiang, D., Tung, A., Chen, G.: Map-Join-Reduce: toward scalable and efficient data analysis on large clusters. IEEE Trans. Knowl. Data Eng. 23(9), 1299–1311 (2011)CrossRefGoogle Scholar
  12. 12.
    Villegas-Ch, W., Luján-Mora, S., Buenaño-Fernandez, D., Palacios-Pacheco, X.: Big Data, the next step in the evolution of educational data analysis. In: International Conference on Information Theoretic Security, pp. 138–147. Springer, Cham, January 2018CrossRefGoogle Scholar
  13. 13.
    Villegas-Ch, W., Luján-Mora, S.: Analysis of data mining techniques applied to LMS for personalized education. In: IEEE World Engineering Education Conference (EDUNINE), pp. 85–89. IEEE, March 2017Google Scholar
  14. 14.
    Villegas-Ch, W., Luján-Mora, S., Buenaño-Fernandez, D.: Towards the integration of business intelligence tools applied to educational data mining. In: 2018 IEEE World Engineering Education Conference (EDUNINE), pp. 1–5. IEEE, March 2018Google Scholar
  15. 15.
    Villegas-Ch, W., Luján-Mora, S., Buenaño-Fernandez, D.: Data mining toolkit for extraction of knowledge from LMS. In: Proceedings of the 2017 9th International Conference on Education Technology and Computers, pp. 31–35. ACM, December 2017Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Iván Ortiz-Garcés
    • 1
    Email author
  • Nicolás Yánez
    • 1
  • W. Villegas-Ch
    • 1
  1. 1.Facultad de Ingenierías y Ciencias AplicadasUniversidad de Las AméricasQuitoEcuador

Personalised recommendations