Advertisement

A Sales Route Optimization Mobile Application Applying a Genetic Algorithm and the Google Maps Navigation System

  • Cristian Zambrano-VegaEmail author
  • Génesis Acosta
  • Jasmin Loor
  • Byron Suárez
  • Carla Jaramillo
  • Byron Oviedo
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 918)

Abstract

Nowadays, the Route Optimization Problem (ROP) is one of the most studied combinational optimization problems that researchers study. Although it is easy to define, its solution is hard. Therefore, it is one of the NP-hard problems in the research literature. It can be used to solve real-life problems such as route planning and scheduling, and transportation and logistics applications. Using the optimal tour results in efficient use of time and fuel. This paper aims to develop an Android Application that can provide optimal tour (shortest distance) to visit a set of clients. Genetic Algorithm is used to solves the problem and is implemented using the Google API and Android OS. The source code of the application is available at url https://github.com/Genethh/VentasExpress.

Keywords

Sales route optimization Genetic Algorithms Minimarkets Distribution 

References

  1. 1.
    Bryant, K., Benjamin, A.: Genetic algorithms and the traveling salesman problem, pp. 10–12. Department of Mathematics, Harvey Mudd College (2000)Google Scholar
  2. 2.
    Garey, M.R.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York (1997)Google Scholar
  3. 3.
    Helshani, L.: An android application for Google map navigation system, solving the travelling salesman problem, optimization throught genetic algorithm. In: Velencei, J. (ed.) Proceedings of FIKUSZ 2015, pp. 89–102. Faculty of Business and Management, Óbuda University, Keleti (2015). https://ideas.repec.org/h/pkk/sfyr15/89-102.html
  4. 4.
    Hervert-Escobar, L., Alexandrov, V.: Iterative projection approach for solving the territorial business sales optimization problem. Procedia Comput. Sci. 122, 1069–1076 (2017)CrossRefGoogle Scholar
  5. 5.
    Larranaga, P., Kuijpers, C.M.H., Murga, R.H., Inza, I., Dizdarevic, S.: Genetic algorithms for the travelling salesman problem: a review of representations and operators. Artif. Intell. Rev. 13(2), 129–170 (1999)CrossRefGoogle Scholar
  6. 6.
    Liu, R., Jiang, Z., Geng, N.: A hybrid genetic algorithm for the multi-depot open vehicle routing problem. OR spectr. 36(2), 401–421 (2014)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Narwadi, T., Subiyanto: An application of traveling salesman problem using the improved genetic algorithm on android Google Maps. In: AIP Conference Proceedings, vol. 1818, p. 020035. AIP Publishing (2017)Google Scholar
  8. 8.
    Razali, N.M., Geraghty, J., et al.: Genetic algorithm performance with different selection strategies in solving TSP. In: Proceedings of the World Congress on Engineering, vol. 2, pp. 1134–1139. International Association of Engineers Hong Kong (2011)Google Scholar
  9. 9.
    Reese, A.: Random number generators in genetic algorithms for unconstrained and constrained optimization. Nonlinear Anal.: Theory Methods Appl. 71(12), e679–e692 (2009)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Vaira, G., Kurasova, O.: Genetic algorithm for VRP with constraints based on feasible insertion. Informatica 25(1), 155–184 (2014)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Veness, C.: Calculate distance and bearing between two latitude/longitude points using Haversine formula in javascript. Movable Type Scripts (2011)Google Scholar
  12. 12.
    Wang, Y.: The hybrid genetic algorithm with two local optimization strategies for traveling salesman problem. Comput. Ind. Eng. 70, 124–133 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Cristian Zambrano-Vega
    • 1
    Email author
  • Génesis Acosta
    • 2
  • Jasmin Loor
    • 2
  • Byron Suárez
    • 2
  • Carla Jaramillo
    • 2
  • Byron Oviedo
    • 1
  1. 1.Facultad de Ciencias de la IngenieríaUniversidad Técnica Estatal de QuevedoQuevedoEcuador
  2. 2.Carrera de Ingeniería en SistemasUniversidad Técnica Estatal de QuevedoQuevedoEcuador

Personalised recommendations