Advertisement

Fuzzy Knowledge Discovery and Decision-Making Through Clustering and Dynamic Tables: Application in Medicine

  • Yamid Fabián Hernández-JulioEmail author
  • Helmer Muñoz Hernández
  • Javier Darío Canabal Guzmán
  • Wilson Nieto-Bernal
  • Romel Ramón González Díaz
  • Patrícia Ponciano Ferraz
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 918)

Abstract

The objective of this study was to design, to implement and to validate a framework for the development of decision system support based on fuzzy set theory using clusters and dynamic tables. To validate the proposed framework, a fuzzy inference system was developed with the aim to classify breast cancer and compared with other related works (Literature). The fuzzy Inference System has three input variables. The results show that the Kappa Statistics and accuracy were 0.9683 and 98.6%, respectively for the output variable for the Fuzzy Inference System – FIS, showing a better accuracy than some literature results. The proposed framework may provide an effective means to draw a pattern to the development of fuzzy systems.

Keywords

Clustering Dynamic tables Fuzzy sets Breast cancer 

Notes

Acknowledgments

The first author expresses his deep thanks to the Administrative Department of Science, Technology, and Innovation – COLCIENCIAS of Colombia and the Universidad del Norte for the Doctoral scholarship. Also expresses their deep thanks to the Universidad del Sinú Elías Bechara Zainúm for the scholar and financial support.

References

  1. 1.
    American Cancer Society: Cancer Facts & Figures 2018, p. 76. American Cancer Society Inc., Atlanta (2018)Google Scholar
  2. 2.
    Siegel, R.L., Miller, K.D., Jemal, A.: Cancer statistics, 2018. CA Canc. J. Clinic. 68(1), 7–30 (2018)CrossRefGoogle Scholar
  3. 3.
    Onan, A.: A fuzzy-rough nearest neighbor classifier combined with consistency-based subset evaluation and instance selection for automated diagnosis of breast cancer. Exp. Syst. Appl. 42(20), 6844–6852 (2015)CrossRefGoogle Scholar
  4. 4.
    Hayat, M.A.: Breast cancer: an introduction. In: Hayat, M.A. (ed.) Methods of Cancer Diagnosis, Therapy and Prognosis. Methods of Cancer Diagnosis, Therapy and Prognosis, vol. 1. Springer, Dordrecht (2008)CrossRefGoogle Scholar
  5. 5.
    Yazdanbakhsh, O., Dick, S.: A systematic review of complex fuzzy sets and logic. Fuzzy Sets Syst. 338, 1–22 (2018)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Arslan, E., et al.: Rule based fuzzy logic approach for classification of fibromyalgia syndrome. Australas. Phys. Eng. Sci. Med. 39(2), 501–515 (2016)CrossRefGoogle Scholar
  7. 7.
    Nilashi, M., et al.: A knowledge-based system for breast cancer classification using fuzzy logic method. Telemat. Inform. 34(4), 133–144 (2017)CrossRefGoogle Scholar
  8. 8.
    Gayathri, B.M., Sumathi, C.P.: Mamdani fuzzy inference system for breast cancer risk detection. In: IEEE International Conference on Computational Intelligence and Computing Research (ICCIC). IEEE (2015)Google Scholar
  9. 9.
    Bache, K., Lichman, M.: UCI machine learning repository. University of California, School of Information and Computer Science, Irvine (2013)Google Scholar
  10. 10.
    Mangasarian, O.L.: Cancer diagnosis via linear programming. SIAM News 23(5), 1–18 (1990)Google Scholar
  11. 11.
    Aghabozorgi, S., Teh, Y.W.: Stock market co-movement assessment using a three-phase clustering method. Expert Syst. Appl. 41(4, Part 1), 1301–1314 (2014)CrossRefGoogle Scholar
  12. 12.
    IBM Corp.: Released 2015. IBM SPSS Statistics for Windows. IBM Corp., Armonk (2015)Google Scholar
  13. 13.
    Caliński, T., Harabasz, J.: A dendrite method for cluster analysis. Commun. Stat. Theor. Methods 3(1), 1–27 (1974)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Leach, A.R., Gillet, V.J.: An Introduction to Chemoinformatics. Springer, Dordrecht (2007)CrossRefGoogle Scholar
  15. 15.
    Malhat, M.G., El-Sisi, A.B.: Parallel ward clustering for chemical compounds using OpenCL. In: Tenth International Conference on Computer Engineering & Systems (ICCES) (2015)Google Scholar
  16. 16.
    Hernández-Julio, Y.F., et al.: Fuzzy system to predict physiological responses of Holstein cows in southeastern Brazil. Rev. Col. Cienc. Pecu. 28(1), 42–53 (2015)Google Scholar
  17. 17.
    Tanaka, K.: An Introduction to Fuzzy Logic for Practical Applications, 1st edn. Springer, New York (1996)zbMATHGoogle Scholar
  18. 18.
    Sivanandam, S., Sumathi, S., Deepa, S.: Introduction to Fuzzy Logic Using MATLAB, vol. 1. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  19. 19.
    The MathWorks Inc.: Design and Simulate Fuzzy Logic Systems. The MathWorks Inc. (2017)Google Scholar
  20. 20.
    Pota, M., Esposito, M., De Pietro, G.: Designing rule-based fuzzy systems for classification in medicine. Knowl. Based Syst. 124, 105–132 (2017)CrossRefGoogle Scholar
  21. 21.
    Ali, F., et al.: Type-2 fuzzy ontology–aided recommendation systems for IoT–based healthcare. Comp. Commun. 119, 138–155 (2018)CrossRefGoogle Scholar
  22. 22.
    Nguyen, T., et al.: Medical data classification using interval type-2 fuzzy logic system and wavelets. Appl. Soft Comput. 30, 812–822 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Yamid Fabián Hernández-Julio
    • 1
    Email author
  • Helmer Muñoz Hernández
    • 1
  • Javier Darío Canabal Guzmán
    • 1
  • Wilson Nieto-Bernal
    • 2
  • Romel Ramón González Díaz
    • 1
  • Patrícia Ponciano Ferraz
    • 3
  1. 1.Faculty of Economics, Administrative and Accounting SciencesUniversity of the Sinú Elías Bechara ZainúmMontería, CórdobaColombia
  2. 2.Systems Engineering and ComputationUniversity of the NorthBarranquillaColombia
  3. 3.Engineering DepartmentUniversidade Federal de LavrasLavrasBrazil

Personalised recommendations