A High-Order Finite Volume Method for the Simulation of Phase Transition Flows Using the Navier–Stokes–Korteweg Equations

  • Abel MartínezEmail author
  • Luis Ramírez
  • Xesús Nogueira
  • Fermín Navarrina
  • Sofiane Khelladi
Part of the Springer Tracts in Mechanical Engineering book series (STME)


In this work, we employ the Navier–Stokes–Korteweg system of equations for the simulation of phase transition flows. This system belongs to the diffuse interface models, in which both phases are separated by a non-zero thickness interface where the properties vary continuously. The key idea of these methods is the ability to use the same set of equations for the entire computational domain, regardless of the phase of the fluid. However, these methods lead to a system of equations with high-order derivatives, which are difficult to discretize and solve numerically. Here, we propose the use of a high-order Finite Volume method, FV-MLS, for the resolution of the Navier–Stokes–Korteweg equations. The method uses Moving Least Squares approximations for the direct and accurate discretization of higher-order derivatives, which is particularly suitable for simulations on unstructured meshes. In this work, we show two numerical examples in which the interface is set to interact with great changes in the properties, in order to demonstrate the robustness of the method.


  1. 1.
    Anderson DM, McFadden GB, Wheeler AA (1998) Diffuse-interface methods in fluid mechanics. Annu Rev Fluid Mech 30:139–165MathSciNetCrossRefGoogle Scholar
  2. 2.
    Korteweg DJ (1901) Sur la forme que prennent les équations du mouvements des fluides si l’on tient compte des forces capillaires causées par des variations de densité consiérables mais continues et sur la théorie de la capillarité dans l’hypothèse d’une variation continue de la densité. Archives Néerlandaises des Sciences Exactes et Naturelles. Series II 6:1–24zbMATHGoogle Scholar
  3. 3.
    Jamet D, Torres D, Brackbill JU (2002) On the theory and computation of surface tension: the elimination of parasitic currents through energy conservation in the second-gradient method. J Comput Phys 182:262–276CrossRefGoogle Scholar
  4. 4.
    Diehl D (2007) Higher order schemes for simulation of compressible liquid-vapor flows with phase change. PhD thesisGoogle Scholar
  5. 5.
    Gómez H, Hughes TJR, Nogueira X, Calo VC (2010) Isogeometric analysis of the isothermal Navier-Stokes-Korteweg equations. Comput Methods Appl Mech Eng 199:1828–1840MathSciNetCrossRefGoogle Scholar
  6. 6.
    Cueto-Felgueroso L, Colominas I (2008) High-order finite volume methods and multiresolution reproducing kernels. Arch Comput Methods Eng 15(2):185–228MathSciNetCrossRefGoogle Scholar
  7. 7.
    Cueto-Felgueroso L, Colominas I, Nogueira X, Navarrina F, Casteleiro M (2006) High order finite volume schemes on unstructured grids using Moving Least Squares construction, Application to shallow waters dynamics. Int J Numer Methods Eng 65:295–331CrossRefGoogle Scholar
  8. 8.
    Cueto-Felgueroso L, Colominas I, Nogueira X, Navarrina F, Casteleiro M (2007) Finite volume solvers and moving least-squares approximations for the compressible Navier-Stokes equations on unstructured grids. Comput Methods Appl Mech Eng 196:4712–4736MathSciNetCrossRefGoogle Scholar
  9. 9.
    Khelladi S, Nogueira X, Bakir F, Colominas I (2011) Toward a higher order unsteady finite volume solver based on reproducing kernel methods. Comput Methods Appl Mech Eng 200(29):2348–2362MathSciNetCrossRefGoogle Scholar
  10. 10.
    Lancaster P, Salkauskas K (1981) Surfaces generated by moving least squares methods. Math. Comput. 37(155):141–158MathSciNetCrossRefGoogle Scholar
  11. 11.
    Nogueira X, Ramírez L, Khelladi S, Chassaing J, Colominas I (2015) A high-order density-based finite volume method for the computation of all-speed flows. Comput Methods Appl Mech Eng 298:229–251MathSciNetCrossRefGoogle Scholar
  12. 12.
    van der Waals JD (1873) On the continuity of the gaseous and liquid states. PhD thesisGoogle Scholar
  13. 13.
    van der Waals JD (1979) The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density. J Stat Phys (Reprinted) 20:197–244CrossRefGoogle Scholar
  14. 14.
    Serrin J (2008) The area rule for simple fluid phase transitions. J Elast 90:129–159MathSciNetCrossRefGoogle Scholar
  15. 15.
    Rusanov VV (1962) The calculation of the interaction of non-stationary shock waves and obstacles. USSR Comput Math Math Phys 1(2):304–320CrossRefGoogle Scholar
  16. 16.
    Li X-S, Gu C-W (2013) Mechanism of Roe-type schemes for all-speed flows and its application. Comput Fluids 86:56–70MathSciNetCrossRefGoogle Scholar
  17. 17.
    Liu J, Gómez H, Evans JA, Hughes TJR, Landis CM (2013) Functional entropy variables: a new methodology for deriving thermodynamically consistent algorithms for complex fluids, with particular reference to the isotermal Navier-Stokes-Korteweg equations. J Comput Phys 248:47–86MathSciNetCrossRefGoogle Scholar
  18. 18.
    Ramírez L, Nogueira X, Khelladi S, Chassaing J-C, Colominas I (2014) A new higher-order finite volume method based on moving least squares for the resolution of the incompressible Navier-Stokes equations on unstructured grids. Comput Methods Appl Mech Eng 278:883–901MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Abel Martínez
    • 1
    Email author
  • Luis Ramírez
    • 1
  • Xesús Nogueira
    • 1
  • Fermín Navarrina
    • 1
  • Sofiane Khelladi
    • 2
  1. 1.Universidade da Coruña, Group of Numerical Methods in EngineeringA CoruñaSpain
  2. 2.Laboratoire de Dynamique des FluidesArts et Métiers ParisTechParisFrance

Personalised recommendations