Numerical Modelling of a Savonius Wind Turbine Using the URANS Turbulence Modelling Approach

  • Tomasz KrysinskiEmail author
  • Zbigniew Bulinski
  • Andrzej J. Nowak
Part of the Springer Tracts in Mechanical Engineering book series (STME)


This work presents a three-dimensional investigation of the performance prediction of the operation of the vertical axis wind turbine. The analysis was carried out for the micro-turbine equipped with the Savonius rotor. The applied methodology was based on the Computational Fluid Dynamics (CFD) and used the Finite Volume method to solve the unsteady Reynolds Averaged Navier–Stokes equations. We concentrated our investigations on the influence of the turbulence modelling methodology on the simulation results. The analysis considers most of the URANS turbulence models, starting with the commonly used two equation models like \(k-\epsilon \) or \(k-\omega \) SST to the Reynolds Stress Models with quadratic pressure strain modelling. The results show the influence of turbulence models on the results of the predicted flow field and wind turbine performance.



The research has been supported by National Science Centre within OPUS scheme under contract UMO-2017/27/B/ST8/02298.


  1. 1.
    Burton T, Sharpe D, Jenkins N, Bossanyi E (2001) Wind energy handbook. Wiley Ltd, ChicesterCrossRefGoogle Scholar
  2. 2.
    Hau E (2006) Wind turbines. In: Fundamentals, technologies, application, economics, 2nd edn. Springer, BerlinGoogle Scholar
  3. 3.
    Ericsson S, Bernhoff H, Leijon M (2008) Evaluation of different turbine concepts for wind power. Renew Sustain Energy Rev 12:1419–1434CrossRefGoogle Scholar
  4. 4.
    Pope K, Dincer I, Naterer GF (2010) Energy and exergy efficiency comparison of horizontal and vertical axis wind turbines. Renew Energy 35:2102–2113CrossRefGoogle Scholar
  5. 5.
    Agren O, Berg M, Leijon M (2005) A time-dependent potential flow theory for the aerodynamics of vertical axis wind turbines. J Appl Phys 97:104913CrossRefGoogle Scholar
  6. 6.
    Delgaire P, Engblom S, Ågren O, Bernhoff H (2009) Analytical solutions for a single blade in vertical axis turbine motion in two-dimensions. Eur J Mech B/Fluids 28:506–520Google Scholar
  7. 7.
    Islam MR, Mekhilef S, Saidur R (2013) Progress and recent trends of wind energy technology. Renew Sustain Energy Rev 21:456–468CrossRefGoogle Scholar
  8. 8.
    Pope SB (2000) Turbulent flows. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  9. 9.
    Versteeg HK, Malalasekera W (2007) An introduction to computational fluid dynamics. The finite volume method, 2nd edn. Pearson Education Limited, HarlowGoogle Scholar
  10. 10.
    Wilcox DC (1998) Turbulence modelling for CFD. DCW Industries Inc., La Canada, CaliforniaGoogle Scholar
  11. 11.
    Rolland S, Newton W, Williams AJ, Croft TN, Gethin DT, Cross (2013) Simulations technique for the design of a vertical axis wind turbine device with experimental validation. Appl Energy 111:1195–1203CrossRefGoogle Scholar
  12. 12.
    Nasef MH, El-Askary WA, AbdEL-hamid AA, Gad HE (2013) Evaluation of Savonius rotor performance: static and dynamic studies. J Wind Eng Ind Aerodyn 123:1–11CrossRefGoogle Scholar
  13. 13.
    D\(^\prime \)Alessandro V, Montelpare S, Ricci R, Secchhiaroli A (2010) Unsteady aerodynamics of a Savonius wind rotor: a new computational approach for the simulation of energy performance. Energy 35:3349–3363CrossRefGoogle Scholar
  14. 14.
    Castelli MR, Englaro A, Benini E (2011) The Darrieus wind turbine: proposal for a new performance prediction model based on CFD. Energy 36:4919–4934CrossRefGoogle Scholar
  15. 15.
    McTavish S, Feszty D, Sankar T (2012) Steady and rotating computational fluid dynamics simulations of a novel vertical wind turbine for small-scale power generation. Renew Energy 41:171–179CrossRefGoogle Scholar
  16. 16.
    Rossetti A, Pavesi G (2013) Comparison of different numerical approaches to the study of the H-Darrieus turbines start-up. Renew Energy 50:7–19CrossRefGoogle Scholar
  17. 17.
    Castelli MR, Dal Monte A, Quaresimin M, Benini E (2013) Numerical evaluation of aerodynamic and inertial contributions to Darrieus wind turbine blade deformation. Renew Energy 51:101–112Google Scholar
  18. 18.
    Almohammadi KM, Ingham DB, Ma L, Pourkashan M (2013) Computational fluid dynamics (CFD) mesh independency techniques for a straight blade vertical axis wind turbine. Energy 58:483–493CrossRefGoogle Scholar
  19. 19.
    Zhou T, Rempfer D (2013) Numerical study of detailed flow field and performance of Savonius wind turbines. Renew Energy 51:373–381CrossRefGoogle Scholar
  20. 20.
    Kacprzak K, Liskiewicz G, Sobczak K (2013) Numerical investigation of convectional and modified Savonius wind turbines. Renew Energy 60:578–585CrossRefGoogle Scholar
  21. 21.
    Kamoji MA, Kedare SB, Prabhu SV (2008) Experimental investigations on single stage, two stage and three stage conventional Savonius rotor. Int J Energy Res 32:877–895CrossRefGoogle Scholar
  22. 22.
    Ansys Fluent documentation 18.2 ReleaseGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Tomasz Krysinski
    • 1
    Email author
  • Zbigniew Bulinski
    • 1
  • Andrzej J. Nowak
    • 1
  1. 1.Institute of Thermal TechnologySilesian University of TechnologyGliwicePoland

Personalised recommendations