Advertisement

MRI Images Segmentation for Alzheimer Detection Using Multi-agent Systems

  • Kenza ArbaiEmail author
  • Hanane Allioui
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 914)

Abstract

Neurodegenerative diseases such as Alzheimer’s disease (AD), present increasing challenges. Determining the sequence and evolution of the symptoms and pathologies of AD will enable pre-symptom differential diagnosis, and treatment monitoring. Current diagnosis of Alzheimer is made by clinical, neuropsychological, and neuroimaging assessments. In fact, Magnetic Resonance Imaging (MRI) can be considered as the best neuroimaging examination for AD due to the well-defined measurement of brain structures, especially the size of the hippocampus and related regions. Image processing techniques has been used for processing the (MRI) image. Multi-agent Systems (MAS) is a strong paradigm full of complexity that offers promoters solution. We present a MAS solution that aims to automate the search and optimization of image processing. In this survey we propose a three-dimensional (3D) segmentation process based on cooperative MAS.

Keywords

Alzheimer Neurodegenerative diseases Multi-agent system Cooperation 3D image analysis Segmentation 

References

  1. 1.
    Citron, M.: Alzheimer’s disease: strategies for disease modification. Nat. Rev. Drug Discov. 9, 387–398 (2010)CrossRefGoogle Scholar
  2. 2.
    Dong, S., Duan, Y., Hu, Y., Zhao, Z.: Advances in the pathogenesis of Alzheimer’ s disease: a re-evaluation of amyloid cascade hypothesis. Transl. Neurodegener. 1, 18 (2012)CrossRefGoogle Scholar
  3. 3.
    Varghese, T., Sheelakumari, R., James, J.S., Mathuranath, P.: A review of neuroimaging biomarkers of Alzheimer’s disease. Neurol. Asia 18(3), 239–248 (2013)Google Scholar
  4. 4.
    Knight, M.J., McCann, B., Kauppinen, R.A., Coulthard, E.J.: Magnetic resonance imaging to detect early molecular and cellular changes in Alzheimer’s disease. Front. Aging Neurosci. 8, 139 (2016)CrossRefGoogle Scholar
  5. 5.
    Khan, A.M., Ravi, S.: Image segmentation methods: a comparative study. Int. J. Soft Comput. Eng. (IJSCE) 3(4) (2013). ISSN : 2231-2307Google Scholar
  6. 6.
    Khare, P., Mittal, N.: Analysis of medical image segmentation techniques. Int. Bull. Math. Res. 2, 188–193 (2015)Google Scholar
  7. 7.
    Newton, R.D.: The identity of Alzheimer’s disease and sinile dementia and their relationship to senility. J. Ment. Sci. 94(395), 225–249 (1948)CrossRefGoogle Scholar
  8. 8.
    Coyle, J.T., Price, D.L., DeLong, M.R.: Alzheimer’s disease: a disorder of cortical cholinergic innervation. Science 219(4589), 1184–1190 (1983)CrossRefGoogle Scholar
  9. 9.
    Wong, C.W., Quaranta, V., Glenner, G.G.: Neuritic plaques and cerebrovascular amyloid in Alzheimer disease are antigenically related. Proc. Natl. Acad. Sci. U.S.A. 82(24), 8729–8732 (1985)CrossRefGoogle Scholar
  10. 10.
    Nukina, N., Ihara, Y.: One of the antigenic determinants of paired helical filaments is related to tau protein. J. Biochem. 99(5), 1541–1544 (1986)CrossRefGoogle Scholar
  11. 11.
    de la Torre, J.C., Mussivand, T.: Can disturbed brain microcirculation cause Alzheimer’s disease. Neurol. Res. 15(3), 146–153 (1993)CrossRefGoogle Scholar
  12. 12.
    Contestabile, A.: The history of the cholinergic hypothesis. Behav. Brain Res. 221(2), 334–340 (2011)CrossRefGoogle Scholar
  13. 13.
    Cochran, J.N., Hall, A.M., Roberson, E.D.: The dendritic hypothesis for Alzheimer’s disease pathophysiology. Brain Res. Bull. 103, 18–28 (2013)CrossRefGoogle Scholar
  14. 14.
    Barnes, D.E., Yaffe, K.: The projected effect of risk factor reduction on Alzheimer’s disease prevalence. Lancet Neurol. 10, 819–828 (2011)CrossRefGoogle Scholar
  15. 15.
    Camicioli, R.: Distinguishing different dementias. Can. Rev. Alzheimer’s Dis. Other Dement. 9, 4–11 (2006)Google Scholar
  16. 16.
    Paulus, M.P.: The role of neuroimaging for the diagnosis and treatment of anxiety disorders. Depress Anxiety 25(4), 348–356 (2008)CrossRefGoogle Scholar
  17. 17.
    Freidl, W., Schmidt, R., Stronegger, W.J., Reinhart, B.: The impact of sociodemographic, environmental, and behavioural factors, and cerebrovascular risk factors as potential predictors of the mattis dementia rating scale. J. Gerontol. 52(2), 111–116 (1997)CrossRefGoogle Scholar
  18. 18.
    Small, G.W., La Rue, A., Komo, S., Kaplan, A., Mandelkern, M.A.: Predictors of cognitive change in middle-aged and older adults with memory loss. Am. J. Psychiatry 152(12), 1757–1764 (1995)CrossRefGoogle Scholar
  19. 19.
    Nyberg, L., Backman, L., Erngrund, K., Olofsson, U., Nilsson, L.G.: Age differences in episodic memory, semantic memory, and priming: relationships to demographic, intellectual, and biological factors. J. Gerontol. 51(4), 234–240 (1996)CrossRefGoogle Scholar
  20. 20.
    Morris, R.G.: Recent developments in the neuropsychology of dementia. Int. Rev. Psychiatry 6, 85–107 (1994)CrossRefGoogle Scholar
  21. 21.
    Baddeley, A.D.: Working memory. Science 255, 556–559 (1992)CrossRefGoogle Scholar
  22. 22.
    Mitrushina, M., Uchiyama, C., Satz, P.: Heterogeneity of cognitive profiles in normal aging: implications for early manifestations of Alzheimer’s disease. J. Clin. Exp. Neuropsychol. 17(3), 374–382 (1995)CrossRefGoogle Scholar
  23. 23.
    Satel, S., Lilienfeld, S.O.: Brainwashed: The Seductive Appeal of Mindless Neuroscience. Basic Books, New York City (2015). ISBN 978-0465062911Google Scholar
  24. 24.
    Machairas, V., Baldeweck, T., Walter, T., Decencière, E.: New general features based on superpixels for image segmentation learning, February 2016. https://hal.archives-ouvertes.fr/hal-01276132
  25. 25.
    Shapiro, L.G., Haralick, R.M.: Computer and Robot Vision, vol. 1. Addison-Wesley, Boston (1992)Google Scholar
  26. 26.
    Chardin, A.: Modèles énergétiques hièrarchiques pour la résolution des problèmes inverses en analyse d’images, France (2000)Google Scholar
  27. 27.
    Ferber, J.: Les Systèmes Multi-agents: vers une Intelligence Collective. InterEditions, Paris (1995)zbMATHGoogle Scholar
  28. 28.
    Mazouzi, S., Guessoum, Z., Michel, F., Batouche, M.: An agent-based approach, for range image segmentation. In: Jamali, N., Scerri, P., Sugawara, T. (eds.) Massively Multi-agent Technology. LNAI, vol. 5043, pp. 146–161. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  29. 29.
    Spinu, C., Garbay, C., Chassery, J.: A multi-agent approach to edge detection as a distributed optimization problem. In: Proceedings of the 13th International Conference on Pattern Recognition, Austria, vol. 2, pp. 81–85 (1996)Google Scholar
  30. 30.
    Boucher, A.: A society of goal-oriented agents for the analysis of living cells. Artif. Intell. Med. 14(1–2), 183–196 (1998)CrossRefGoogle Scholar
  31. 31.
    Germond, L.: A cooperative framework for segmentation of MRI brain scan. Artif. Intell. Med. 20(1), 77–93 (2000)CrossRefGoogle Scholar
  32. 32.
    Duchesnay, E.: An agent-based implementation of irregular pyramid for distributed image segmentation. In: Proceedings of the 8th International Conference on Emerging Technologies and Factory, France, pp. 409–415 (2001)Google Scholar
  33. 33.
    Richard, N., Dojat, M., Garbay, C.: Automated segmentation of human brain MR images using a multi-agent approach. Artif. Intell. Med. 30(2), 75–153 (2004)CrossRefGoogle Scholar
  34. 34.
    Benamrane, N., Nassane, S.: Medical image segmentation by a multi-agent system approach. In: Proceedings of the 5th German Conference on Multiagent System Technologies, Germany, pp. 49–60 (2007)Google Scholar
  35. 35.
    Chitsaz, M., Seng, W.C.: Medical image segmentation using a multi-agent system approach. Int. Arab J. Inf. Technol. 10(3), 222–229 (2013)Google Scholar
  36. 36.
    Arsene, O., Dumitrache, I., Mihu, I.: Expert system for medicine diagnosis using software agents. Expert Syst. Appl. 42, 1825–1834 (2015)CrossRefGoogle Scholar
  37. 37.
    Nachour, A., Ouzizi, L., Aoara, Y.: Multi-agent segmentation using region growing and contour detection: syntetic evaluation in MR images with 3D CAD reconstruction. Int. J. Comput. Inf. Syst. Ind. Manag. Appl. 8, 115–124 (2016)Google Scholar
  38. 38.
    Sauwen, N., et al.: Semi-automated brain tumor segmentation on multi-parametric MRI using regularized non-negative matrix factorization. BMC Med. Imaging BMC Ser. – Open Incl Trusted 17, 29 (2017)CrossRefGoogle Scholar
  39. 39.
    Martin, S., Ouelhadj, D., Beullens, P., Ozcan, E., Juan, A.A., Burke, E.K.: A multi-agent based cooperative approach to scheduling and routing. Eur. J. Oper. Res. 254, 169–178 (2016)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Singh, M., Duggirala, M., Hayatnagarkar, H., Balaraman, V.: A multi-agent model of workgroup behaviour in an enterprise using a compositional approach (2016)Google Scholar
  41. 41.
    Sadgal, M., El Faziki, A.: Une architecture mult-agents Basée Sur la Catégorisation dans le Traitement d’images. In: International Conference on Image an Signal Processing, Agadir, 3–5 May 2001, pp. 608–617 (2001)Google Scholar
  42. 42.
    McKhann, G.M., et al.: The diagnosis of dementia due to Alzheimer’s disease: recommendations from the national institute on aging-Alzheimer’s association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Dement. 7(3), 263–269 (2011)CrossRefGoogle Scholar
  43. 43.
    Shadlen, M., Larson, E.: Evaluation of cognitive impairment and dementia. In: Basow, D. (ed.) Up To Date, Waltham (2010)Google Scholar
  44. 44.
    Dickson, D.W.: Neuropathology of Alzheimer’s disease and other dementias’. Clin. Geriatr. Med. 17(2), 209–228 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Laboratory of Genetics, Neuroendocrinology and Biotechnology, Faculty of SciencesIbn Tofail UniversityKenitraMorocco
  2. 2.Computer Science Department, Faculty of Sciences SemlaliaCadi Ayyad UniversityMarrakechMorocco

Personalised recommendations