Personalized Healthcare System Based on Ontologies

  • Chaymae BenfaresEmail author
  • Younès El Bouzekri El Idrissi
  • Karim Hamid
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 914)


Depression and anxiety disorders are common mental health issues that affect our ability to work and our productivity. In this paper, we propose an architecture of a surveillance system, that provides personalized and intelligent services to medical teams that monitor the psychic state of the patient, in the field of mental health, using knowledge of health services and an interactive context of patients between doctors and mental health professionals, we base on an automatic and homogeneous evaluation of the patient’s needs in terms of prevention and detection of depressive tendencies. We use ontologies and recommender systems to provide patients with a climate of well-being and ubiquitous follow-up. Our case study is the prevention and screening of depression and anxiety disorders in cancer patients, the unit of psychology, at the center of ontology and hematology of the University Hospital Center “CHU” of Marrakech.


Healthcare Ontology Service Personalization Depression Recommender systems 


  1. 1.
    OMS: Plan d’action global pour la santé mentale 2013–2020. Organ. Mond. la Santé, 49 (2013)Google Scholar
  2. 2.
    Azimi, I., Anzanpour, A., Rahmani, A.M., Liljeberg, P.: Self-aware early warning score system for IoT-based personalized healthcare. In: eHealth 360°, vol. 181, pp. 49–55 (2017)Google Scholar
  3. 3.
    Avalos, M., Salazar, P., Cities, A.S.: Powered by Leading Edge Cognitive Services Consumed in the Cloud (2016)Google Scholar
  4. 4.
    Ouhbi, S., Idri, A., Hakmi, R., Benjelloun, H., Fernandez-Aleman, J.L., Toval, A.: Requirements specification of an e-health solution to improve cardiovascular healthcare services in Morocco. In: 11th International Conference on Intelligent Systems: Theories and Applications, SITA 2016, pp.16–21 (2016)Google Scholar
  5. 5.
    Liu, W., Park, E.K.: Big data as an e-health service. In: International Conference on Computing, Networking and Communications, ICNC 2014, pp. 982–988 (2014)Google Scholar
  6. 6.
    Lewy, H.: Wearable technologies – future challenges for implementation in healthcare services. Healthc. Technol. Lett. 2, 2–5 (2015)CrossRefGoogle Scholar
  7. 7.
    Kanaan, H., Mahmood, K., Sathyan, V.: An ontological model for privacy in emerging decentralized healthcare systems. In: Proceedings of IEEE 13th International Symposium on Autonomous Decentralized System, ISADS 2017, pp. 107–113 (2017)Google Scholar
  8. 8.
    Cardoso, S., Aimé, X., Felipe, L., Mora, M., Grabli, D., Meininger, V., Charlet, J.: cadre des maladies neurodégénératives. dans le cadre des maladies neurodégénératives, 1 (2016)Google Scholar
  9. 9.
    Jiang, L., Yang, C.C.: Personalized Recommendation in online health communities with heterogeneous network mining. In: IEEE International Conference on Healthcare Informatics, pp. 281–284 (2016)Google Scholar
  10. 10.
    Alqadah, F., Reddy, C.K., Hu, J., Alqadah, H.F.: Biclustering neighborhood-based collaborative filtering method for top-n recommender systems. Knowl. Inf. Syst. 44, 475–491 (2015)CrossRefGoogle Scholar
  11. 11.
    Gao, S., Guo, G., Lin, Y., Zhang, X., Liu, Y., Wang, Z.: Pairwise preference over mixed-type item-sets based bayesian personalized ranking for collaborative filtering. In: IEEE 15th International Conference on Dependable, Autonomic and Secure Computing, 15th International Conference on Pervasive Intelligence and Computing, 3rd International Conference on Big Data Intelligence and Computing and Cyber Science and Technology Congress, pp. 30–37 (2017)Google Scholar
  12. 12.
    Benfares, C., El Bouzekri El Idrissi, Y., Abouabdellah, A.: Recommendation semantic of services in smart city. In: Proceedings of the 2nd International Conference on Big Data, Cloud Application – BDCA 2017, pp. 1–6 (2017)Google Scholar
  13. 13.
    Synak, M., Dabrowski, M., Kruk, S.R.: Semantic web and ontologies. In: Semantic Digital Libraries, pp. 41–54 (2009)Google Scholar
  14. 14.
    Akundi, P.: Reliable semantic systems for decision making: defining a business rules ontology for a survey decision system. In: Semantic Web, pp. 153–172. Springer, Cham (2016)Google Scholar
  15. 15.
    Benfares, C., El Idrissi, Y., Amine, A.: Smart city: recommendation of personalized services in patrimony tourism. In: 4th IEEE International Colloquium on Information Science and Technology (CiSt), 24 October 2016, pp. 835–840. IEEE (2016)Google Scholar
  16. 16.
    Béchet, N.: Etat de l’art sur les Systèmes de Recommandation. Bechet. Users. Greyc. Fr (2012)Google Scholar
  17. 17.
    Pheniics, S.: `se de Doctorat Th e de l’ Universit e ´ par e ´ e a pr e l’ Universit e Structure des noyaux les plus lords : spectroscopie du noyau 251 Fm (2016)Google Scholar
  18. 18.
    Sulieman, D., Syst, D.S.: Syst`emes de recommandation sociaux et s´emantiques (2014)Google Scholar
  19. 19.
    Mokhtar, B., Mokhtar, A.-B.: Une Technique Hybride pour les Systèmes de Recommandation (2016)Google Scholar
  20. 20.
  21. 21.
    Échelle HAD: Hospital Anxiety and Depression scale, pp. 3–4 (2014)Google Scholar
  22. 22.
    Trees, D.: Introduction to Decision Trees 14. Event (London)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Chaymae Benfares
    • 1
    Email author
  • Younès El Bouzekri El Idrissi
    • 1
  • Karim Hamid
    • 2
  1. 1.Department of Systems Engineering Laboratory, ENSAIbn Tofail UniversityKenitraMorocco
  2. 2.Center for Oncology and HematologyUniversity Hospital Center of Mohammed VI MarrakechMarrakechMorocco

Personalised recommendations