Advertisement

Optimization by Response Surface Methodology of Copper-Pillared Clay Catalysts Efficiency for the CWPO of 4-Nitrophenol

  • Fidâ BaraghEmail author
  • Khalid Draoui
  • Brahim El Bali
  • Mahfoud Agunaou
  • Abdelhak Kherbeche
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 913)

Abstract

The properties of copper-based pillared clays (Cu-PILBen) have been studied and compared with those of Aluminum-based clays (Al-PILBen) in the catalytic wet hydrogen peroxide oxidation (CWPO) of model phenolic compound 4-nitrophenol (4-NP) without pH adjustment. The parameters like temperature (40–60 °C), peroxide dosage (8–12 mM) and initial 4-NP concentration (50–100 mg/L) were optimized using a three-factor Box–Behnken Design (BBD) of response surface methodology (RSM). The results of this study showed that more than 90% of 4-NP was experimentally degraded using Cu-PILBen after 4 h of reaction time under optimum conditions of temperature and initial concentrations of H2O2 and 4-NP, which was in a good agreement with the BBD model’s prediction of a 97% maximum degradation at 52 °C, initial 4-NP concentration of 50 mg/L and peroxide dosage of 10 mM.

Keywords

4-nitrophenol Pillared clay catalysts Catalytic wet peroxide oxidation Response surface methodology 

Notes

Acknowledgment

The authors gratefully acknowledge the financial support of CNRST-Maroc (Projets dans les domaines Prioritaires de la Recherche scientifique et du développement technologique PPR2).

References

  1. 1.
    World Health Organization (WHO) (2017). http://www.who.int/
  2. 2.
    Satoa, T., Qadir, M., Yamamotoe, S., Endoe, T., Zahoor, A.: Global, regional, and country level need for data on wastewater generation, treatment, and use. Agric. Water Manag. 130, 1–13 (2013)CrossRefGoogle Scholar
  3. 3.
    U.S. EPA: National Pesticide Survey: 4-NitroPhenol, National Service Center for Environmental Publications (2015)Google Scholar
  4. 4.
    U.S. Department of Health and Human Services (HSS): toxicological profile for chlorophenols. Sciences International, inc., Research Triangle Park, nc (1999)Google Scholar
  5. 5.
    Agency for Toxic Substances and Disease Registry (ATSDR): toxicological profile for nitrophenols: 2-nitrophenols and 4-nitrophenols, Public Agency for Toxic Substances and Diseases Registry, Health Service (1992)Google Scholar
  6. 6.
    Huong, P.-T., Lee, B.-K., Kim, J., Lee, C.-H.: Nitrophenols removal from aqueous medium using fenano mesoporous zeolite. Mater. Des. 101, 210–217 (2016)CrossRefGoogle Scholar
  7. 7.
    Zhang, J., Wu, C., Jia, A., Hu, B.: Kinetics, equilibrium and thermodynamics of the sorption of p-nitrophenol on two variable charge soils of Southern China. Appl. Surf. Sci. 298, 95–101 (2014)CrossRefGoogle Scholar
  8. 8.
    Hamidouche, S., Bouras, O., Zermane, F., Cheknane, B., Houari, M., Debord, J., Harel, M. Bollinger, J.-C., Baudu, M.: Simultaneous sorption of 4-nitrophenol and 2-nitrophenol on a hybrid geocomposite based on surfactant-modified pillared-clay and activated carbon. Chem. Eng. J. 279, 964–972 (2015)CrossRefGoogle Scholar
  9. 9.
    Shen, Y.-H.: Removal of phenol from water by adsorption–flocculation using organobentonite. Water Res. 36, 1107–1114 (2002)CrossRefGoogle Scholar
  10. 10.
    Mantzavinos, D., Psillakis, E.: Enhancement of biodegradability of industrial wastewaters by chemical oxidation pre-treatment. J. Chem. Technol. Biotechnol. 79, 431–454 (2004)CrossRefGoogle Scholar
  11. 11.
    Wang, J.-L., Zhao, G., Wu, L.-B.: Slurry-phase biological treatment of nitrophenol using bioaugmentation technique. Biomed. Environ. Sci. 18, 77–81 (2005)Google Scholar
  12. 12.
    Jemaat, Z., Suárez-Ojeda, M.E., Pérez, J., Carrera, J.: Simultaneous nitritation and p-nitrophenol removal using aerobic granular biomass in a continuous airlift reactor. Bioresour. Technol. 150, 307–313 (2013)CrossRefGoogle Scholar
  13. 13.
    Kim, S.-C., Lee, D.-K.: Preparation of Al–Cu pillared clay catalysts for the catalytic wet oxidation of reactive dyes. Catal. Today 97, 153–158 (2004)CrossRefGoogle Scholar
  14. 14.
    El Gaidoumi, A., Chaouni Benabdallah, A., El Bali, B., Kherbeche, A.: Synthesis and characterization of zeolite HS using natural pyrophyllite as New Clay Source. Arab. J. Sci. Eng. 43(1), 191–197 (2017)CrossRefGoogle Scholar
  15. 15.
    Nath, N., Routaray, A., Das, Y., Maharana, T., Sutar, A.K.: Synthesis and structural studies of polymer supported transition metal complexes: Efficient catalysts for oxidation of phenol. Kinet. Catal. 56(6), 718–732 (2015)CrossRefGoogle Scholar
  16. 16.
    Rodrigues Carmen, S.D., Soares, O.S.G.P., Pinho, M.T., Pereira, M.F.R., Madeira Luis, M.: p-nitrophenol degradation by heterogeneous fenton’s oxidation over activated carbon-based catalysts. Appl. Catal. B 219, 109–122 (2017)CrossRefGoogle Scholar
  17. 17.
    Timofeeva, M.N., Khankhasaeva, S.T., Talsi, E.P., Panchenko, V.N., Golovin, A.V., Dashinamzhilova, E.T., Tsybulya, S.V.: The effect of Fe/Cu ratio in the synthesis of mixed Fe, Cu, Al-clays used as catalysts in phenol peroxide oxidation. Appl. Catal. B 90, 618–627 (2009)CrossRefGoogle Scholar
  18. 18.
    Carriazo, J., Guélou, E., Barrault, J., Tatibouët, J.-M., Moreno, S.: Catalytic wet peroxide oxidation of phenol over Al–Cu or Al–Fe modified clays. Appl. Clay Sci. 22, 303–308 (2003)CrossRefGoogle Scholar
  19. 19.
    Carriazo, J., Guélou, E., Barrault, J., Tatibouët, J.-M., Molina, R., Moreno, S.: Synthesis of pillared clays containing Al, Al-Fe or Al-Ce-Fe from a bentonite: characterization and catalytic activity. Water Res. 39, 3891–3899 (2005)CrossRefGoogle Scholar
  20. 20.
    El Gaidoumi, A., Loqman, A., Chaouni Benadallah, A., El Bali, B., Kherbeche, A.: Co(II)-pyrophyllite as catalyst for phenol oxidative degradation: optimization study using response surface methodology. Waste Biomass Valor (2017). http://dx.doi.org/10.1007/s12649-017-0117-5
  21. 21.
    Sotelo, J., Ovejero, G., Martinez, F., Melero, J., Milieni, A.: Catalytic wet peroxide oxidation of phenolic solutions over a LaTi1−xCuxO3 perovskite catalyst. Appl. Catal. B: Environ. 47, 281–294 (2004)CrossRefGoogle Scholar
  22. 22.
    Pinnavaia, T.J.: Intercalated clay catalysts. Science 220, 365–371 (1983)CrossRefGoogle Scholar
  23. 23.
    Gil, A., Gandía, L.M., Vicente, M.A.: Recent advances in the synthesis and catalytic applications of pillared clays. Catal. Rev. Sci. Eng. 42, 145–212 (2000)CrossRefGoogle Scholar
  24. 24.
    Gil, A., Korili, S.A., Vicente, M.A.: Recent advances in the control and characterization of the porous structure of pillared clay catalysts. Catal. Rev. Sci. Eng. 50, 153–221 (2008)CrossRefGoogle Scholar
  25. 25.
    Vicente, M.A., Gil, A., Bergaya, F.: Pillared clays and clay minerals. In: Bergaya, F., Lagaly, G. (eds.) Handbook of Clay Science, 2nd edn. Elsevier, Amsterdam (2013)Google Scholar
  26. 26.
    Zhu, J., Wen, K., Zhang, P., Wang, Y., Ma, L., Xi, Y., Zhu, R., Liu, H., He, H.: Keggin-Al30 pillared montmorillonite. Microporous Mesoporous Mater. 242, 256–263 (2017)CrossRefGoogle Scholar
  27. 27.
    Belaroui, L.S., Millet, J.M.M., Bengueddach, A.: Characterization of lalithe, a new bentonite-type Algerian clay, for intercalation and catalysts preparation. Catal. Today 89, 279–286 (2004)CrossRefGoogle Scholar
  28. 28.
    Bergaya, F., Lagaly, G.: Purification of natural clays. In: Bergaya, F., Lagaly, G. (eds.) Handbook of Clay Science, pp. 213–219. Elsevier, Amsterdam (2013)CrossRefGoogle Scholar
  29. 29.
    Ben Achma, R., Ghorbel, A., Dafinov, A., Medina, F.: Copper-supported pillared clay catalysts for the wet hydrogen peroxide catalytic oxidation of model pollutant tyrosol. Appl. Catal. A 349, 20–28 (2008)CrossRefGoogle Scholar
  30. 30.
    Hang, P.T., Brindley, G.W.: Methylene blue adsorption by clay minerals. determination of surface areas and cation exchange capacities (clay-organic studies XVIII). Clays Clay Miner. 18, 203–212 (1970)CrossRefGoogle Scholar
  31. 31.
    Rytwo, G., Serben, C., Nir, S., Margulies, L.: Use of methylene blue and crystal violet for determination of exchangeable cations in montmorillonite. Clays Clay Miner. 39(5), 551–555 (1991)CrossRefGoogle Scholar
  32. 32.
    Khalaf, H., Bouras, O., Perrichon, V.: Synthesis and characterization of Al-pillared and cationic surfactant modified algerian bentonite. Microporous Mater. 8, 141–150 (1997)CrossRefGoogle Scholar
  33. 33.
    Ayodele, O.B., Hameed, B.H.: Synthesis of copper pillared bentonite ferrioxalate catalyst for degradation of 4-nitrophenol in visible light assisted fenton process. J. Ind. Eng. Chem. 19, 966–974 (2013)CrossRefGoogle Scholar
  34. 34.
    Wang, S.W., Dong, Y.H., He, M.L., Chen, L., Yu, X.J.: Characterization of GMZ bentonite and its application in the adsorption of Pb (II) from aqueous solutions. Appl. Clay Sci. 43, 164–171 (2009)CrossRefGoogle Scholar
  35. 35.
    Yuan, P., Annabi-Bergaya, F., Tao, Q., Fan, M.D., Liu, Z.W., Zhu, J.X., He, H.P., Chen, T.H.: A combined study by XRD, FTIR, TG and HRTEM on the structure of delaminated Fe-intercalated/pillared clay. J. Colloid Interface Sci. 324, 142–149 (2008)CrossRefGoogle Scholar
  36. 36.
    Eren, E., Afsin, B.: An investigation of Cu (II) adsorption by raw and acid-activated bentonite: a combined potentiometric, thermodynamic, XRD, IR. DTA study. J. Hazard. Mater. 151, 682–691 (2018)CrossRefGoogle Scholar
  37. 37.
    El Miz, M., Akichoh, H., Berraaouan, D., Salhi, S., Tahani, A.: Chemical and physical characterization of moroccan bentonite taken from nador (north of Morocco). Am. J. Chem. 7(4), 105–112 (2017)Google Scholar
  38. 38.
    Loqman, A., El Bali, B., Lützenkirchen, J., Weidler, P.G., Kherbeche, A.: Adsorptive removal of crystal violet dye by a local clay and process optimization by response surface methodology. Appl. Water Sci. (2016)  https://doi.org/10.1007/s13201-016-0509-xCrossRefGoogle Scholar
  39. 39.
    Li, H., Li, Y., Xianga, L., Huanga, Q., Qiua, J., Zhanga, H., Sivaiah, M.V., Baronb, F., Barrault, J., Petit, S., Valange, S.: Heterogeneous photo-fenton decolorization of orange II over Al-pillared Fe-smectite: response surface approach, degradation pathway, and toxicity evaluation. J. Hazard. Mater. 287, 32–41 (2015)CrossRefGoogle Scholar
  40. 40.
    Hamdi, H., Namane, A., Hank, D., Hellal, A.: Coupling of photocatalysis and biological treatment for phenol degradation: application of factorial design methodology. JMES 8(11), 3953–3961 (2017)Google Scholar
  41. 41.
    Tripathi, P., Srivastava, V.C., Kumar, A.: Optimization of an azo dye batch adsorption parameters using Box-Behnken design. Desalination 249, 1273–1279 (2009)CrossRefGoogle Scholar
  42. 42.
    Sharmaa, P., Singha, L., Dilbaghi, N.: Optimization of process variables for decolorization of disperse Yellow 211 by bacillus subtilis using Box-Behnken design. J. Hazard. Mater. 164, 1024–1029 (2009)CrossRefGoogle Scholar
  43. 43.
    Ayodele, O.B., Lim, J.K., Hameed, B.H.: Degradation of phenol in photo-Fenton process by phosphoric acid modified kaolin supported ferric-oxalate catalyst: optimization and kinetic modelling. Chem. Eng. J. 197, 181–192 (2012)CrossRefGoogle Scholar
  44. 44.
    Diya’uddeen, B.H., Abdul Aziz, A.R., Ashri Wan Daud, W.M.: Oxidative mineralisation of petroleum refinery effluent using Fenton-like process. Chem. Eng. Res. Des. 90(2), 298–307 (2012)Google Scholar
  45. 45.
    Yetilmezsoy, K., Demirel, S., Vanderbei, R.J.: Response surface modeling of Pb(II) removal from aqueous solution by Pistacia vera L.: Box-Behnken experimental design. J. Hazard. Mater. 171, 551–562 (2009)CrossRefGoogle Scholar
  46. 46.
    Caudo, S., Genovese, C., Perathoner, S., Centi, G.: Copper-pillared clays (Cu-PILBen) for agro-food wastewater purification with H2O2. Microporous Mesoporous Mater. 107, 46–57 (2008)CrossRefGoogle Scholar
  47. 47.
    Pignatello, J., Oliveros, E., MacKay, A.: Advanced oxidation processes for organic contaminant destruction based on the fenton reaction and related chemistry. Crit. Rev. Environ. Sci. Technol. 36, 1–84 (2006)CrossRefGoogle Scholar
  48. 48.
    Feng, H., Le-cheng, L.: Degradation kinetics and mechanisms of phenol in photo-fenton process. J. Zhejiang Univ.: Sci. 5, 198–205 (2004)CrossRefGoogle Scholar
  49. 49.
    Mojović, Z., Banković, P., Milutinović-Nikolić, A., Dostanić, J., Jović-Jovičić, N., Jovanović, D.: Al, Cu-pillared clays as catalysts in environmental protection. Chem. Eng. J. 154, 149–155 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Fidâ Baragh
    • 1
    • 2
    Email author
  • Khalid Draoui
    • 3
  • Brahim El Bali
    • 2
  • Mahfoud Agunaou
    • 1
  • Abdelhak Kherbeche
    • 2
  1. 1.Laboratory of Coordination and Analytical Chemistry (LCCA), Faculty of SciencesChouaib Doukkali UniversityEl JadidaMorocco
  2. 2.Laboratory of Catalysis, Materials and Environment (LCME), Higher School of TechnologySidi Mohamed Ben Abdellah University, USMBA, ESTFezMorocco
  3. 3.Materials and Interfacial Systems Laboratory (MSI), Faculty of SciencesAbdel Malek Essaadi UniversityTetouanMorocco

Personalised recommendations