Performance of Aspergillus niger and Kluyveromyces marxianus for Optimized Bioethanol Production from Dairy Waste

  • Dounia AzzouniEmail author
  • Amal Lahkimi
  • Bouchra Louaste
  • Mustapha Taleb
  • Mehdi Chaouch
  • Noureddine Eloutassi
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 913)


Generally, biotechnology is used for a cleaner production and an increased energy effectiveness with less greenhouse gases emissions responsibles of serious environmental problems: air and water pollution.

Parallel to the increase of generated organic waste, during last decades, the recourse to renewable sources of energy receives considerable interest in the whole world. The energy of biomass is one of the promising sources, which contributes to organic waste valorization: wastewater, agricultural residues and industrial waste that can be used for bio-fuel production.

In this study we are interested in dairy waste valorisation as those effluents are characterized by high organic matter content, considerable concentrations of oils and greases, high levels of BOD5, COD, nitrogen and phosphorus, significant variations of the pH and temperature and a high conductivity which largely exceeds those of domestic waste.

Thus, our study is devoted to the production of bioenergy from dairy waste by two yeast Strains (Aspergillus niger and Kluyveromyces marxianus) characterized by a great output of ethanol and a strong performance in the depollution of these industrial effluents.


Bioenergy Aspergillus niger Kluyveromyces marxianus Depollution Bioethanol Dairy waste 


  1. 1.
    Zahedifar, M.: Novel uses of Lignin and Hemicellulosic Sugars from Acidhydrolysed Lignocellulosic Materials. Thesis submitted for the degree of Doctor of Philosophy in the University of Aberdeen. University of Tehran (1996)Google Scholar
  2. 2.
    Prévot, H.: La récupération de l’énergie issue du traitement des déchets. Rapport d’Ingénieur général des mines. Conseil général des Mines Ministère de l’Economie, des finances et de l’industrie, Canada (2000)Google Scholar
  3. 3.
    Abidi, N.: Valorisation du lactose et du lactosérum en acide succinique par fermentation bactérienne. Doctorat en Microbiologie agricole. Université Laval, Québec (2009)Google Scholar
  4. 4.
    SGIC: Secrétariat du Groupe d’experts intergouvernemental sur l’évolution du climat. Les émissions de gaz à effet de serre s’accélèrent malgré les efforts de réduction. Communiqué de Presse du GIEC, Genève, Suisse (2014)Google Scholar
  5. 5.
    Gana, S., Touzi, A.: Valorisation du lactosérum par la production de levures lactiques avec les procédés de fermentation discontinue et continue. Rev. Energ. Ren. 1, 51–58 (2001)Google Scholar
  6. 6.
    Jinjarak, S., Olabi, A., Flores, R.J., Sodini, I., Walker, J.H.: Sensory evaluation of lactoserum and sweet cream buttermilk. J. Dairy Sci. 89, 2441–2450 (2006)CrossRefGoogle Scholar
  7. 7.
    Marwaha, S.S., Kennedy, J.F., Khanna, P.K., Tewori, H.K., Redhu, A.: Comparative investigation on the physiological parameters of free and immobilized yeast for effective treatment of Dairy effluents. Physiology of immobilized cells. In: Proceeding of an International Symposium Held at Wageningen. Elsevier Science Publishers. B. V. Amsterdam (1988). Printed in NetherlandsGoogle Scholar
  8. 8.
    Talabardon, A.M.: Acetic acid productions from milk permeate in anaerobic thermophilic fermentation. Thèse pour l’obtention du grade de docteur ès sciences techniques, Genève, Suisse (1999)Google Scholar
  9. 9.
    Bertrand, M.: Suivi de l’ATP et des protéines du biofilm dans un bioréacteur à lit fluidisé fermentant un perméat de lactosérum reconstitué. Mémoire présenté à l’Université du Québec à Chicoutimi, Canada (2002)Google Scholar
  10. 10.
    Glutz, F.N.: Fuel bioethanol production from lactoserum permeate. Doctorat universitaire Es Sciences. Ecole Polytechnique. Fédérale de Lausanne, Suisse, N° 4372 (2009)Google Scholar
  11. 11.
    Allouache, A., Aziza, M.A., Zaid, T.A.: Analyse de cycle de vie du bioéthanol. Revue des Energies Renouvelables, vol. 16, no. 2, pp. 357–364 (2013)Google Scholar
  12. 12.
    Lefrileux, Y.: Gestion des effluents d’Elevage et de Fromagerie chez les laitiers et les fromagers. Institut de l’Elevage Lefrileux. 4èmes Journées Techniques Caprines (2013)Google Scholar
  13. 13.
    Chauprade, A., Talimi, J.P.: Le changement climatique: causes et avis partagés GÉOPOLITIQUE: Carnets du Temps, no. 55, pp. 12–14 (2014)Google Scholar
  14. 14.
    Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A., Smith, F.: Colorimetric method for determination of sugars and related substances. Anal. Chem. 28, 350–356 (1956)CrossRefGoogle Scholar
  15. 15.
    Gold, R.S., Meagher, M.M., Tong, S., Hutkins, R.W., Conway, T.: Cloning and expression of the Zymomonas mobilis ‘‘production of ethanol’’ genes in Lactobacillus casei. Curr. Microbiol. 33, 256–260 (1996)CrossRefGoogle Scholar
  16. 16.
    Yazawa, H., Iwahashi, H., Uemura, H.: Disruption of URA7 and GAL6 improves the ethanol tolerance and fermentation capacity of Saccharomyces cerevisiae. Yeast 24(7), 551–560 (2007)CrossRefGoogle Scholar
  17. 17.
    Coté, A., Brown, W.A., Cameron, D., Walsum, G.P.: Hydrolysis of lactose in lactoserum permeate for subsequent fermentation to ethanol. Am. J. Dairy Sci. 87, 1608–1620 (2004)CrossRefGoogle Scholar
  18. 18.
    Carlson, R., Nordahl, A.: Exploring organic synthetic, experimental procedures. Top. Curr. Chem. 166, 1–64 (1993)CrossRefGoogle Scholar
  19. 19.
    Olsson, L., Hahn, H.B.: Fermentation of lignocellulosic hydrolysates for ethanol production. Enzyme Microb. Technol. 18, 312–331 (1996)CrossRefGoogle Scholar
  20. 20.
    Eloutassi, N., Louasté, B., Chaouch, M.: Production des sucres simples à partir du lactose issu du lactosérum. Rev. Microbiol. Ind. San et Environn. 5(2), 39–53 (2011)Google Scholar
  21. 21.
    Zhao, X., Xue, C., Ge, X., Yuan, W., Wang, Y., Bai, W.: Impact of zinc supplementation on the improvement of ethanol tolerance and yield of self-flocculating yeast in continuous ethanol fermentation. J. Biotechnol. 139(1), 55–60 (2009). View at Publisher · View at Google Scholar · View at ScopusGoogle Scholar
  22. 22.
    Gomes, L.H., Duarte, K.M.R., Lira, S.P.: Increase on ethanol production by blocking the ADH2 gene expression in GFP3-transformed Saccharomyces cerevisiae. Greener J. Biol. Sci. 3(1), 058–060 (2013)CrossRefGoogle Scholar
  23. 23.
    Furlan, S.A., Schneider, A.L.S., Merkle, R., Carvalho-Jonas, M.F., Jonas, R.: Optimization of pH, temperature and inoculum ratio for the production of β-D-Galactosidase by Kluyveromyces marxianus using a lactose-free medium. Acta Biotechnol. 21(1), 57–64 (2001)CrossRefGoogle Scholar
  24. 24.
    Arroyo-Lopez, N.F., Orlić, S., Querol, A., Barrio, E.: Effects of temperature, pH and sugar concentration on the growth parameters of Saccharomyces cerevisiae, S. kudriavzevii and their interspecific hybrid. Int. J. Food Microbiol. 131, 120–127 (2009)CrossRefGoogle Scholar
  25. 25.
    Hadiyanto, H., Ariyantia, D., Puspita, A.A., Pinundia, D.S.: Optimization of ethanol production from lactoserum through fed-batch fermentation using Kluyveromyces marxianus. Energy Proc. 47, 108–112 (2014)CrossRefGoogle Scholar
  26. 26.
    Carina, S.A., Guimarães, P.M.R., Teixeira, J.A., Lucília, D.: Production of bioethanol from concentrated cheese lactoserum lactose using flocculent Saccharomyces cerevisiae. Poster Session: S7 – Industrial and Food Microbiology and Biotechnology: Book of Abstracts of MicroBiotec 09, 28 (2009)Google Scholar
  27. 27.
    Christensen, K., Andresen, R., Tandskov, I., Norddahl, B., Preez, J.H.: Production of bioethanol from organic lactoserum using Kluyveromyces marxianus. J. Ind. Microbiol. Biotechnol. 38, 283–289 (2011)CrossRefGoogle Scholar
  28. 28.
    Rodrigues, N., Rocha, A.F., Barros, M.A., Fischer, J., Filho, U.C., Cardoso, V.L.: Ethanol production from agroindustrial biomass using a crude enzyme complex produced by Aspergillus niger. Renew. Energy 57, 432–435 (2013)Google Scholar
  29. 29.
    Staniszewski, M., Kujawski, W., Lewandowska, M.: Ethanol production from lactoserum in bioreactor with co-immobilized enzyme and yeast cells followed by pervaporative recovery of product – Kinetic model predictions. J. Food Eng. 82, 618–625 (2007)CrossRefGoogle Scholar
  30. 30.
    Agustriyanto, R., Fatmawati, A.: World Academy of Science, Engineering and Technology. Model of Continuous Cheese Lactoserum Fermentation by Candida Pseudotropicalis, vol. 57, pp. 213–217 (2009)Google Scholar
  31. 31.
    Ghanadzadeh, H., Ghorbanpour, N.: Optimization of ethanol production from cheese lactoserum fermentation in a batch-airlift bioreactor. J. Bioeng. Biomed. Sci. 2, 111 (2012).
  32. 32.
    Gabardo, S., Rech, R., Augusto, C., Záchia, M.A.: Dynamics of ethanol production from lactoserum and lactoserum permeate by immobilized strains of Kluyveromyces marxianus in batch and continuous bioreactors. Renew. Energy 69, 89e96 (2014)Google Scholar
  33. 33.
    Errachidi, F., El Outassi, N., Remmal, A.: Amélioration d’une Strain de Candida tropicalis EF14 pour la production d’éthanol et l’assimilation des phénols. Thèse de Troisième Cycle en Biologie, Option Biotechnologie. Université Sidi Mohammed Ben Abdellah, Faculté des Sciences Dhar El Mahraz, Fès (1997)Google Scholar
  34. 34.
    Becerra, M., Baroli, B., Fadda, A.M., Méndez, J., Siso, M.I.: Lactose bioconversion by calcium-alginate immobilization of Kluyveromyces lactis cells. Enzyme Microb. Technol. 29, 506–512 (2001)CrossRefGoogle Scholar
  35. 35.
    Cotè, A., Brown, W.A., Cameron, D., Walsum, J.P.V.: Hydrolysis of lactose in lactoserum permeate for subsequent fermentation to ethanol. J. Dairy Sci. 87, 1608–1620 (2004)CrossRefGoogle Scholar
  36. 36.
    Ansaria, S.A., Qayyum, H.: Lactose hydrolysis from milk/lactoserum in batch and continuous processes by concanavalin A-Celite 545 immobilized Aspergillus oryzae _ galactosidase. Food Bioprod. Process. 90, 351–359 (1985)CrossRefGoogle Scholar
  37. 37.
    Osman, Y.A., Ingram, L.O.: Mechanism of ethanol inhibition of fermentation in Zymonas mobilis. J. Bacteriol. 164, 173–180 (1985)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Dounia Azzouni
    • 1
    Email author
  • Amal Lahkimi
    • 2
  • Bouchra Louaste
    • 3
  • Mustapha Taleb
    • 2
  • Mehdi Chaouch
    • 1
  • Noureddine Eloutassi
    • 1
  1. 1.Process Engineering and Environment Laboratory, Faculty of Sciences Dhar El MahrazSidi Mohamed Ben Abdellah UniversityFezMorocco
  2. 2.Engineering, Electrochemistry, Modelling and Environmental Laboratory, Faculty of Sciences Dhar El MahrazSidi Mohamed Ben Abdellah UniversityFezMorocco
  3. 3.Biotechnology Laboratory, Faculty of Sciences Dhar El MahrazSidi Mohamed Ben Abdellah UniversityFezMorocco

Personalised recommendations