Advertisement

Study of the Effect of Evaporation Temperature on the Qualitative and Quantitative Separation of Marine Mineral Salts: Prediction and Application on the Seawaters of the Atlantic Sea, Morocco

  • F. Z. KarmilEmail author
  • S. Mountadar
  • A. Rich
  • M. Siniti
  • M. Mountadar
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 913)

Abstract

This work aims to determine the temperature effect on the separation of sea- salts mineral on the Moroccan Atlantic coast. The main objective of this study is the determination of the optimal conditions of the evaporation process through the prediction of the liquid-solid equilibrium of seawaters at each stage of the evaporation process. Hence, the physicochemical and thermodynamic properties of evaporation were exploited through the calculation codes Frezchem and PhreeqcI3 to quantify the effect of the ionic composition of raw and concentrated seawater on the evaluation of salinity and on the qualitative and quantitative separation of salts. Moreover, the results obtained by the used calculation codes were validated by experiments. The results obtained from simulation modeling for different temperatures (25 °C, 50 °C, 75 °C and 100 °C) and different compositions were in good agreement with the experimental results carried out under the determined optimal conditions. In addition, it can be concluded from the results that the saturation and quantitative separation thresholds of each type of salt for different concentrations of marine waters are different and this is mainly due to the variation in the solubility of each salt as a function of the variation in temperature. Concerning the temperature effect, it was observed that the quantity and quality of precipitated marine salts by evaporation of the raw and concentrated waters of the Atlantic Ocean varied with the studied temperatures.

Keywords

Seawater Evaporation Sea-salts 

References

  1. 1.
    Kovacheva, A., Rabadjieva, D., Tepavitcharova, S.: Simulation of stable and metastable sea-type carbonate systems for optimization of MgCO3.3H2O precipitation from waste sea brines. Desalination 348, 66–73 (2014)CrossRefGoogle Scholar
  2. 2.
    Bassegio, G.: The composition of sea water and its concentrates. In: Coogan, A.H. (ed.) 4th International Symposium on Salt, Houston, Texas, 8–12 April, vol. 2, pp. 351–358 (1974)Google Scholar
  3. 3.
    Logan, B.W.: The MacLeod Evaporite Basin, Western Australia: Holocene Environments, Sediments and Geological Evolution, 44, pp. 1–140. AAPG Memoir (1987)Google Scholar
  4. 4.
    McCaffrey, M.A., Lazar, B., Holland, H.D.: The evaporation path of seawater and co precipitation of Br and Kþ with halite. J. Sediment. Petrol. 57, 928–937 (1987)Google Scholar
  5. 5.
    Garrett, D.E.: The chemistry and origin of potash deposits. In: Rau, J.L., Dellwig, L.F. (eds.) 3rd Symposium on Salt, Cleveland, 21–24 April, vol. 1, pp. 211–222. Northern Ohio Geological Society, Cleveland, OH (1969)Google Scholar
  6. 6.
    Herrmann, A.G., Knake, D., Schneider, J., Peters, H.: Geochemistry of modern seawater and brines from salt pans: main components and bromine distribution. Contrib. Miner. Petrol. 40, 1–24 (1973)CrossRefGoogle Scholar
  7. 7.
    Busson, G., Cornée, A., Dulau, N., et al.: Nature et genèse des faciès confinés: Données hydrochimiques, biologiques, isotopiques, sédimentologique et diagénétiques sur les marais salants de Salin-de-Giraud (Sud de la France). Nature and genesis of confined facies: Hydrochemical, biological, isotopic, sedimentological and diagenetic data on the salt marshes of salin in Giraud (South of France). Mediterr. Geol. 9, 303–592 (1982)Google Scholar
  8. 8.
    Orti, F., Busson, G.: Introduction to the sedimentology of the coastal salinas of Santa Pola (Alicante, Spain). Rev. Inv. Geol. 38–39, 9–229 (1984)Google Scholar
  9. 9.
    Geisler-Cussey, D.: Approche sédimentologique et géochimique des mécanismes généra-teurs de formations évaporitiques actuelles et fossiles. Marais salants de Camargue et du Levant espagnol, Messinien méditerranéen et Trias lorrain. Sedimentological and geo-chemical approach of the evaporite and fossil formations: Camargue and Spanish levant salt marshes, Mediterranean Messinian and Lorraine triassic. Sciences de la Terre, Nancy: Fondation scientifique de la géologie et de ses applications. Mémoires, vol. 48, pp. 1–268 (1986)Google Scholar
  10. 10.
    Valyashko, M.G.: Geochemical Rules of the Potassium Salt Deposits Formation, pp. 1–398. Izdatelstvo Moskovskovo Universiteta, Moscow (1962). (in Russian)Google Scholar
  11. 11.
    Krauskopf, K.B.: Introduction to Geochemistry, pp. 1–721. McGraw-Hill/Kōgakusha, New York/Tokyo (1967)Google Scholar
  12. 12.
    Garrett, D.E.: Potash Deposits, Processing, Properties and Uses. Chapman and Hall, London (1996)Google Scholar
  13. 13.
    Jadhav, M.H.: Recovery of crystalline magnesium chloride-hexahydrate by solar evaporation of sea bitterns. In: Schreiber, B.C., Harner, H.R. (eds.) 6th International Symposium on Salt, Toronto, Ontario, Canada, 24–28 May, vol. 2, pp. 417–419 (1983)Google Scholar
  14. 14.
    Bąbel, M., Schreiber, B.C.: Geochemistry of Evaporites and Evolution of Seawater (2014)Google Scholar
  15. 15.
    AFNOR, Recueil des normes Françaises: Qualité de l’eau, 3e édn/Collection of Frensh Standards: Water quality, 3rd edn (1999)Google Scholar
  16. 16.
    Marion, G.M., Farren, R.E.: Mineral solubilities in the Na–K–Mg–Ca–Cl–SO 4–H2O system: a re-evaluation of the sulfate chemistry in the Spencer-Møller-Weare model. Geochim. Cosmochim. Acta 63, 1305–1318 (1999)CrossRefGoogle Scholar
  17. 17.
    Marion, G.M., Kargel, J.S.: Cold Aqueous Planetary Geochemistry with FREZCHEM: From Modeling to the Search for Life at the Limits. Springer, Berlin (2008)Google Scholar
  18. 18.
    Marion, G.M., Catling, D.C., Kargel, J.S.: Br/Cl partitioning in chloride minerals in the Burns formation on Mars. Icarus 200, 436–445 (2009)CrossRefGoogle Scholar
  19. 19.
    Marion, G.M., Catling, D.C., Crowley, J.K., Kargel, J.S.: Modeling hot spring chemistries with applications to martian silica formation. Icarus 212, 629–642 (2011)CrossRefGoogle Scholar
  20. 20.
    Marion, G.M., Catling, D.C., Zahnle, K.J., Claire, M.W.: Modeling aqueous perchlorate chemistries with applications to Mars. Icarus 207, 675–685 (2010)CrossRefGoogle Scholar
  21. 21.
    Marion, G.M., et al.: Modeling aluminum-silicon chemistries and application to Australian acidic playa lakes as analogues for Mars. Geochim. Cosmochim. Acta 73, 3493–3511 (2009)CrossRefGoogle Scholar
  22. 22.
    Marion, G.M., Kargel, J.S., Catling, D.C.: Modeling ferrous-ferric iron chemistry with application to Martian surface geochemistry. Geochim. Cosmochim. Acta 72, 242–266 (2008)CrossRefGoogle Scholar
  23. 23.
    Marion, G.M., Kargel, J.S., Catling, D.C., Lunine, J.I.: Modeling ammonia-ammonium aqueous chemistries in the Solar System’s icy bodies. Icarus 220, 932–946 (2012)CrossRefGoogle Scholar
  24. 24.
    Marion, G.M., Kargel, J.S., Catling, D.C., Lunine, J.I.: Modeling nitrogen–gas,-liquid,-solid chemistries at low temperatures (173–298 K) with applications to Titan. Icarus 236, 1–8 (2014)CrossRefGoogle Scholar
  25. 25.
    Marion, G.M., Kargel, J.S., Catling, D.C., Lunine, J.I.: Sulfite–sulfide–sulfate—carbonates equilibria with applications to Mars. Icarus 225, 342–351 (2013)CrossRefGoogle Scholar
  26. 26.
    Marion, G.M., Kargel, J.S., Tan, S.P.: Modeling nitrogen and methane with ethane and propane gas hydrates at low temperatures (173–290 K) with applications to Titan. Icarus 257, 355–361 (2015)CrossRefGoogle Scholar
  27. 27.
    Marion, G.M., Mironenko, M.V., Roberts, M.W.: FREZCHEM: a geochemical model for cold aqueous solutions. Comput. Geosci. 36, 10–15 (2010)CrossRefGoogle Scholar
  28. 28.
    Marion, G.M., Catling, D.C., Kargel, J.S., Crowley, J.K.: Modeling calcium sulfate chemistries with applications to Mars. Icarus 278, 31–37 (2016)CrossRefGoogle Scholar
  29. 29.
    Rich, A.: Dessalement de l’eau de mer par congélation sur paroi froide: aspect thermodynamique et influence des conditions opératoires, Seawater desalination by freezing on cold walls: thermodynamic aspect and influence of operating conditions. University of Rabat (2011)Google Scholar
  30. 30.
    Pitzer, K.S.: Thermodynamics of electrolytes. I. Theoretical basis and general equations. J. Phys. Chem. 77(2), 268 (1973)CrossRefGoogle Scholar
  31. 31.
    Pitzer, K.S., Mayorga, G.: Thermodynamics of electrolytes. III. Activity and osmotic coefficients for 2–2 electrolytes. J. Solution Chem. 3(7), 539 (1974)CrossRefGoogle Scholar
  32. 32.
    Pitzer, K.S., Mayorga, G.: Thermodynamics of electrolytes. II. Activity and osmotic coefficients for strong electrolytes with one or both ions univalent. J. Phys. Chem. 77(19), 2300 (1973)CrossRefGoogle Scholar
  33. 33.
    Pitzer, K.S.: Ion interaction approach: theory and data correlation. In: Pitzer, K.S. (ed.) Activity Coefficients in Electrolyte Solutions, 2nd edn, pp. 75–153. CRC Press, Boca Raton (1991)Google Scholar
  34. 34.
    Pitzer, K.S.: Thermodynamics, 3rd edn. McGraw-Hill, New York (1995)Google Scholar
  35. 35.
    Droubi, A., Fritz, B., Tardy, Y.: Equilibres entre minéraux et solutions: programmes de calcul appliqués à la prédiction de la salure des sols et des doses optimales d’irrigation. Equilibrium between minerals and solutions: calculation program applied to the prediction of soil salinity and optimal irrigation doses. 19 (1979)Google Scholar
  36. 36.
    Paul, J., Rivron, J.P.: La cristallisation fractionnée des sels marins: approche théorique de l’évaporation. Fractionated crystallization of sea-salts, December 2012Google Scholar
  37. 37.
    Weast, R.C., et al.: Handbook of Chemistry and Physics, 51st edn. CRC, Cleveland (1971)Google Scholar
  38. 38.
    Usiglio, J.: Analyse de l’eau de la Méditerranée sur les côtes de France. Mediterranean water analyses on the Coast of France. Ann. Chim. Phys. 3(27), 92–107 (1849)Google Scholar
  39. 39.
    Usiglio, J.: Etudes sur la composition de l’eau de la Méditerranée et sur l’exploitation des sels qu’elle contient. Mediterranean and on the exploitation of the salts it contains. Ann. Chim. Phys. 3(27), 172–191 (1849)Google Scholar
  40. 40.
    Braitsch, O.: Salt Deposits: Their Origin and Composition, pp. 1–297. Springer, Berlin (1971). (Translated from German edition, Springer, Berlin 1962, updated by A. G. Herrmann)Google Scholar
  41. 41.
    Bea, S.A., Carrera, J., Ayora, C., Batle, F.: Modeling of concentrated aqueous solutions: efficient implementation of Pitzer equation in geochemical and reactive transport models. Comp. Geosci. 36, 526–538 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • F. Z. Karmil
    • 1
    • 2
    Email author
  • S. Mountadar
    • 1
    • 2
  • A. Rich
    • 2
  • M. Siniti
    • 2
  • M. Mountadar
    • 1
  1. 1.Laboratory of Water and Environment, Faculty of SciencesChouaib Doukkali UniversityEl JadidaMorocco
  2. 2.Team of Thermodynamics Surface and Catalysis, Faculty of SciencesChouaib Doukkali UniversityEl JadidaMorocco

Personalised recommendations