Advertisement

Effect of Climate Change on Growth, Development and Pathogenicity of Phytopathogenic Telluric Fungi

  • Mohammed EzziyyaniEmail author
  • Ahlem Hamdache
  • Meryem Asraoui
  • Maria Emilia Requena
  • Catalina Egea-Gilabert
  • Maria Emilia Candela Castillo
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 911)

Abstract

Soil microorganisms are extremely numerous and diverse. This diversity responds to the multitude of biogeochemical microenvironments of the soil as well as to the complexity of the forms of organic matter in the soil, their energy resource. Their distribution in the soil is very heterogeneous and is explained by the presence of conditions supporting the development of life. A very likely consequence of global warming would be a change in the range of some phytopathogens such as Phytophthora capsici, Rhizoctonia solani and Fusarium oxysporum. The fungi live in relatively homogeneous conditions. They are all heterotrophic microorganisms living under aerobic conditions. Indeed, certain microorganisms are known to have a distribution limited by temperature. To do this, we focused on the mean rate of mycelial growth as a function of the time (Vmax = d/t) of the three phytopathogens, at three different temperatures (20, 25 and 30 °C) and we also used a series of agroclimatic indices. The results show that F. oxysporum and R. solani have a very limited distribution at 22 and 30 °C (Vmax ≈ 10 mm) for 72 h; however P. capsici showed a Vmax ≈ 20 mm for 72 h, although the pathogen also depends on the temperature, probably its reproductive success as well as its distribution and speeds of development are extremely related to moisture. The pathogenicity analyzed by artificial inoculation of pepper seedlings shows that P. capsici is very aggressive at 30 °C, F. oxysporum showed virulence only at 25 °C but R. solani lost all virulence between 22 and 30 °C.

Keywords

Climate change Temperature Telluric phytopathogenic fungi 

References

  1. 1.
    NASA: National Aeronautics and Space Administration (2017)Google Scholar
  2. 2.
    Trumble, J.T., Butler, C.D.: Climate change will exacerbate California’s insect pest problems. Calif. Agric. 63, 73–78 (2009)CrossRefGoogle Scholar
  3. 3.
    Boland, G.J., Melzer, M.S., Hopkin, A., Hihhins, V., Nassuth, A.: Climate change and plant disease in Ontario. Can. J. Plant Pathol. 26, 335–350 (2014)CrossRefGoogle Scholar
  4. 4.
    Fuhrer, J.: Agroecosystem responses to combinations of elevated CO2, ozone, and global climate change. Agric. Ecosyst. Environ. 97, 1–20 (2003)CrossRefGoogle Scholar
  5. 5.
    Manning, W.J., Tiedeman, A.V.: Climate change: potential effects of increased atmospheric carbon dioxide (CO2), ozone (O3) and ultraviolet-B (UV-B) radiation on plant diseases. Environ. Pollut. 88, 219–245 (1995)CrossRefGoogle Scholar
  6. 6.
    Fajer, E.D., Bowers, M.D., Bazzaz, F.A.: The effects of enriched CO2 atmospheres on the Buckeye Butterfly. Junonia Coenia. Ecology 72, 751–754 (1991)CrossRefGoogle Scholar
  7. 7.
    Mattson, W.J., Haack, R.A.: The role of drought in outbreaks of plant-eating insects. Bio Sci. 37(2), 110–118 (1987)Google Scholar
  8. 8.
    Fleming, R.A., Volney, W.J.A.: Effects of climate change on insect defoliator population processes in Canada’s boreal forest: some plausible scenarios. Water Air Soil Pollut. 82, 445–454 (1995)CrossRefGoogle Scholar
  9. 9.
    Skirvin, D.J., Perry, J.N., Harrington, R.: The effect of climate change on an aphid-coccinellid interaction. Glob. Change Biol. 3, 1–11 (1997)CrossRefGoogle Scholar
  10. 10.
    Hassell, M.P., Godfray, H.C.J., Comins, H.N.: Effects of global change on the dynamics of insect hostparasitoid interactions. In: Biotic Interactions and Global Change, pp. 402–423. Sinauer Associates Inc. (1993)Google Scholar
  11. 11.
    Ponchet, J., Ricci, P., Andreolli, C., Auge, G.: Méthodes sélectives d’isolement du Phytophthora nicotianae fsp parasitica (Dastur) Waterh à partir du sol. Ann Phytopathol. 42, 97–108 (1972)Google Scholar
  12. 12.
    Komada, H.: Development of a selective medium for quantitative isolation of Fusarium oxysporum from natural soil. Rev. Plant Prot. Res. 8, 114–124 (1975)Google Scholar
  13. 13.
    Camporota, P.: Mesure de la colonisation saprophytique en compétition de Rhizoctonia solani Kühn dans les sols et substrats. Agronomie 1(6), 531–5177 (1981)CrossRefGoogle Scholar
  14. 14.
    Rillig, M.C.: Climate change effects on fungi in agroecosystems. In: Newton, P.C.D., Carran, R.A., Edwards, G.R., Niklaus, P.A. (eds.) Agroecosystems in a Changing Climate (2015)Google Scholar
  15. 15.
    Gregory, P.J., Johnson, S.N., Newton, A.C., Ingram, J.S.I.: Intergrating pest and pathogens into the climate change/food security debate. J. Exp. Bot. 60, 2827–2838 (2009)CrossRefGoogle Scholar
  16. 16.
    Salinari, F., Giosuè, S., Tubiello, F.N., Rettori, A., Rossi, V., Spanna, F., Rosenzweig, C., Gullino, M.L.: Downy mildew (Plasmopara viticola) epidemics on grapevine under climate change. Glob. Change Biol. 12, 1299–1307 (2006)CrossRefGoogle Scholar
  17. 17.
    Del Ponte, E.M., Fernandes, J.M.C., Pavan, W.M., Baethgen, W.E.: A model-based assessment of the impacts of climate variability on Fusarium head blight seasonal risk in southern Brazil. J. Phytopathol. 157, 675–681 (2016)CrossRefGoogle Scholar
  18. 18.
    Coakley, S.M., Scherm, H., Chakraborty, S.: Climate change and plant disease management. Ann. Rev. Phytopathol. 37, 399–426 (1999)CrossRefGoogle Scholar
  19. 19.
    Bao, J.R., Zhan, Y.C., Wu, X.S., Yu, S.F.: Studies on the pathogen of stem rot of chinese waterchestnut and its biology. Acta Physiol. Sin. 20, 311–370 (1993)Google Scholar
  20. 20.
    Curtis, R.: Some host parasite relationships in the Curvularia disease of Gladiolus in Florida. Plant Dis. Rep. 45, 512–516 (1961)Google Scholar
  21. 21.
    Desjarlais, C., Allard, M., Belanger, D., Blondlot, A., Bouffard, A., Bourque, A., Chaumont, D., Gosselin, P., Houle, D., Larrivee, C., Lease, N., Savard, J.-P., Turcotte, R., Villeneuve, C., Montreal, QC.: Savoir s’adapter aux changements climatiques. Ouranos (2010)Google Scholar
  22. 22.
    Dhawan, S., Pathak, N., Gary, K.L., Mishra, A., Agrawal, O.P.: Effect of temperature on some fungal isolates of Ajanta wall paintings. In: Proceeding of the International Conference on Biodeterioration of Cultural Property, Lucknow, India, pp. 339–352 (1991)Google Scholar
  23. 23.
    Mishra, R.R., Pandey, K.K.: Studies of soil fungistasis: V. Effect of temperature, moisture content and inoculation period. Indian Phytopathol. 27, 475–479 (1974)Google Scholar
  24. 24.
    Moore-Landecker, E.: Fundamentals of the Fungi. 2nd edn., 578 p. Prentice-Hall, Englewood Cliffs (1982)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Mohammed Ezziyyani
    • 1
    Email author
  • Ahlem Hamdache
    • 2
  • Meryem Asraoui
    • 3
  • Maria Emilia Requena
    • 4
  • Catalina Egea-Gilabert
    • 5
  • Maria Emilia Candela Castillo
    • 4
  1. 1.Polydisciplinary Faculty of Larache, Department of Life SciencesAbdelmalek Essaâdi UniversityLaracheMorocco
  2. 2.Faculty of Sciences of Tetouan, Department of BiologyAbdelmalek Essaâdi UniversityTétouanMorocco
  3. 3.Faculty of Sciences and Techniques of SettatHassan Premier UniversitySettatMorocco
  4. 4.Faculty of Biology, Department of Plant BiologyUniversity of MurciaMurciaSpain
  5. 5.Department of Science and Agrarian Technology, Agronomic EngineeringUniversity Politenic of CartagenaCartagenaSpain

Personalised recommendations