Advertisement

Robust and Fault-Tolerant Control

  • Krzysztof PatanEmail author
Chapter
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 197)

Abstract

The chapter introduces the reader into the theory of automatic control, focusing on nonlinear control schemes developed by means of artificial neural networks. It contains essential information on direct control based on neural networks, model reference adaptive control, feed-forward control, model-predictive control and optimal control. The role played by neural networks in each control scheme is emphasized. Since a desirable feature of modern control systems is some level of robustness and fault tolerance, the next two parts of the chapter discuss the problem of robust control as well as fault-tolerant control. The main objective of these parts is to present the existing approaches to achieving robustness and fault tolerance of control systems and to point out their drawbacks. It can be argued that the use of neural networks can help in solving a number of problems observed in the described methods.

References

  1. 1.
    Barrett, M.F.: Conservatism with robustness tests for linear feedback control systems. Ph.D. thesis, University of Minnesota (1980)Google Scholar
  2. 2.
    Bemporad, A., Morari, M.: Robust model predictive control: a survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control. Lecture Notes in Control and Information Sciences, pp. 207–226. Springer, London (1999)Google Scholar
  3. 3.
    Blanke, M., Kinnaert, M., Lunze, J., Staroswiecki, M.: Diagnosis and Fault-Tolerant Control. Springer, Berlin (2006)zbMATHGoogle Scholar
  4. 4.
    Camacho, E.F., Bordóns, C.: Model Predictive Control, 2nd edn. Springer, London (2007)Google Scholar
  5. 5.
    Chen, J., Patton, R.J.: Robust Model-Based Fault Diagnosis for Dynamic Systems. Kluwer, Berlin (1999)CrossRefGoogle Scholar
  6. 6.
    Davison, E.J.: The robust control of a servomechanism problem for linear time invariant multivariable systems. IEEE Trans. Autom. Control 21, 25–34 (1976). First presented at the Alerton Conference (1973)Google Scholar
  7. 7.
    Doyle, J., Glover, K., Khargonekar, P., Francis, B.: State space solutions to standard \(H_2\) and \(H_{\infty }\) control problems. IEEE Trans. Autom. Control 34, 731–747 (1989)Google Scholar
  8. 8.
    Doyle, J.C.: Guaranteed margins for LQG regulators. IEEE Trans. Autom. Control 23, 756–757 (1978)CrossRefGoogle Scholar
  9. 9.
    Doyle, J.C.: Structured uncertainty in control system design. In: IEE Proceedings, vol. 192-D, pp. 242–250 (1981)Google Scholar
  10. 10.
    Francis, B.A.: A Course in \({H}_\infty \) Control Theory. Lecture Notes in Control and Information Sciences, vol. 88. Springer, Berlin (1987)Google Scholar
  11. 11.
    Harris, T., Seppala, C., Desborough, L.: A review of performance monitoring and assessment techniques for univariate and multivariate control systems. J. Process Control 9(1), 1–17 (1999)CrossRefGoogle Scholar
  12. 12.
    Hu, H., Liu, J., Wang, L.: Model reference neural network control strategy for flight simulator. In: 2010 IEEE International Conference on Mechatronics and Automation, pp. 1483–1488 (2010)Google Scholar
  13. 13.
    Hunt, K.J., Sbarbaro, D., Zbikowski, R., Gathrop, P.J.: Neural networks for control systems – a survey. Automatica 28, 1083–1112 (1992)Google Scholar
  14. 14.
    Kalman, R.E.: When is a linear control system optimal. Trans. ASME Ser. D: J. Basic Eng. 86, 51–60 (1964)CrossRefGoogle Scholar
  15. 15.
    Kuschewski, J.G., Hui, S., Żak, S.: Application of feedforward neural network to dynamical system identification and control. IEEE Trans. Neural Netw. 1, 37–49 (1993)Google Scholar
  16. 16.
    Ławryńczuk, M.: Computationally Efficient Model Predictive Control Algorithms. A Neural Network Approach. Studies in Systems, Decision and Control, vol. 3. Springer, Switzerland (2014)Google Scholar
  17. 17.
    Leigh, J.R.: Control Theory, 2nd edn. IET, London (2008)Google Scholar
  18. 18.
    Liang, Y.: Reliable control of nonlinear systems. IEEE Trans. Autom. Control 45(4), 706–710 (2000)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Lurie, B., Enright, P.: Classical Feedback Control. CRC Press, Boca Raton (2011)Google Scholar
  20. 20.
    Maciejowski, J.: Multivariable Feedback Design. Addison-Wesley, Harlow (1989)zbMATHGoogle Scholar
  21. 21.
    Moore, K.: On the history, accomplishments, and future of the iterative learning control paradigm (2009). http://inside.mines.edu/~kmoore/ANNIE.pdf. Presented at the 2009 artificial neural networks in engineering. St Louis Missouri, USA
  22. 22.
    Narendra, K.S., Parthasarathy, K.: Identification and control of dynamical systems using neural networks. IEEE Trans. Neural Netw. 1, 12–18 (1990)CrossRefGoogle Scholar
  23. 23.
    Nise, N.S.: Control Systems Engineering, 6th edn. Wiley, Hoboken (2011)Google Scholar
  24. 24.
    Nørgaard, M., Ravn, O., Poulsen, N., Hansen, L.: Networks for Modelling and Control of Dynamic Systems. Springer, London (2000)CrossRefGoogle Scholar
  25. 25.
    Montes de Oca, S., Puig, V., Witczak, M., Dziekan, Ł.: Fault-tolerant control strategy for actuator faults using LPV techniques: application to a two degree of freedom helicopter. Int. J. Appl. Math. Comput. Sci. 22(1), 161–171 (2012).  https://doi.org/10.2478/v10006-012-0012-y
  26. 26.
    Ocampo-Martinez, C., De Dona, J.A., Seron, M.M.: Actuator fault-tolerant control based on set separation. Int. J. Adapt. Control Signal Process. 24(12), 1070–1090 (2010)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Patan, K., Korbicz, J.: Nonlinear model predictive control of a boiler unit: a fault tolerant control study. Appl. Math. Comput. Sci. 22(1), 225–237 (2012)zbMATHGoogle Scholar
  28. 28.
    Pearson, J.B., Staats, P.W.: Robust controllers for linear regulators. IEEE Trans. Autom. Control 19, 231–234 (1974)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Pham, D.T., Xing, L.: Neural Networks for Identification, Prediction and Control. Springer, Berlin (1995)CrossRefGoogle Scholar
  30. 30.
    Postlethwaite, I., Edmunds, J.M., MacFarlane, A.G.J.: Principal gains and principal phases in the analysis of linear multivariable feedback systems. IEEE Trans. Autom. Control 26, 32–46 (1981)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Rivals, I., Personnaz, L.: Nonlinear internal model control using neural networks: application to process with delay and design issues. IEEE Trans. Neural Netw. 11, 80–90 (2000)CrossRefGoogle Scholar
  32. 32.
    Rohrs, C.E., Valavani, L., Athans, M.: Convergence studies of adaptive control algorithms: part i. In: Proceedings of the IEEE Conference on Decision and Control, Albuquerque, NM, 10–12 December, pp. 1138–1141 (1980)Google Scholar
  33. 33.
    Rohrs, C.E., Valavani, L., Athans, M., Stein, G.: Robustness of adaptive control algorithms in the presence of unmodeled dynamics. In: Proceedings of the IEEE Conference on Decision and Control, Orlando, FL, 8–10 December, pp. 3–11 (1982)Google Scholar
  34. 34.
    Safonov, M.G.: Robustness and stability aspects of stochastic multivariable feedback system design. Ph.D. thesis, MIT (1977)Google Scholar
  35. 35.
    Safonov, M.G.: Multivariable feedback system design. In: Proceedings of the IEEE Conference on Decision and Control (1981)Google Scholar
  36. 36.
    Safonov, M.G.: Origins of robust control: early history and future speculations. In: Proceedings of the 7th IFAC Symposium on Robust Control Design, Aalborg, Denmark, 20–22 June, pp. 1–8 (2012)Google Scholar
  37. 37.
    Safonov, M.G., Athans, M.: Gain and phase margin for multiloop LQG regulators. IEEE Trans. Autom. Control 22, 173–178 (1977)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Sandberg, I.W.: On the \({L}_2\)-boundedness of solutions of nonlinear functional equations. Bell Syst. Tech. J. 43, 1581–1599 (1964)Google Scholar
  39. 39.
    Simani, S., Farsoni, S.: Fault Diagnosis and Sustainable Control of Wind Turbines. Robust Data-Driven and Model-Based Strategies. Butterworth-Heinemann, Oxford (2018)zbMATHGoogle Scholar
  40. 40.
    Skogestad, S., Postlethwaite, I.: Multivariable Feedback Control. Analysis and Design, 2nd edn. Wiley, New York (2005)Google Scholar
  41. 41.
    Staroswiecki, M., Yang, H., Jiang, B.: Active fault tolerant control based on progressive accomodation. Automatica 43(12), 2070–2076 (2007)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Tsai, M.C., Gu, D.W.: Robust and Optimal Control. A Two-Port Framework Approach. Advances in Industrial Control. Springer, London (2014)Google Scholar
  43. 43.
    Wong, P.K.: On the interaction structure of linear multi-input feedback control systems. Master’s thesis, MIT (1975)Google Scholar
  44. 44.
    Yetendje, A., Seron, M., De Doná, J.: Robust multisensor fault tolerant model-following MPC design for constrained systems. Int. J. Appl. Math. Comput. Sci. 22(1), 211–223 (2012).  https://doi.org/10.2478/v10006-012-0016-7
  45. 45.
    Zames, G.: Functional analysis applied to nonlinear feedback systems. IEEE Trans. Circuit Theory CT-10, 392–404 (1963)Google Scholar
  46. 46.
    Zames, G.: Feedback and optimal sensitivity: model reference transformations, multiplicative seminorms, and approximate inverses. IEEE Trans. Autom. Control 26, 301–320 (1981)MathSciNetCrossRefGoogle Scholar
  47. 47.
    Zhang, Y., Jiang, J.: Bibliographical review on reconfigurable fault-tolerant control systems. Annu. Rev. Control 32(2), 229–252 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Control and Computation EngineeringUniversity of Zielona GóraZielona GóraPoland

Personalised recommendations