Modeling of Elastic and Mechanical Properties of ZnS Using Mehl Method

  • R. NouriEmail author
  • R. Belkacemi
  • S. Ghemid
  • H. Meradji
  • R. Chemam
Conference paper
Part of the Lecture Notes in Mechanical Engineering book series (LNME)


The elastic constants of the materials are essential to understand the matter behaviors. The accurate measurement of elastic constants is based on non-destructive and destructive methods. Theoretically, Density Functional Theory DFT is an accurate tool for the determination of physical properties of crystals. The main purpose of this paper is to show the reliability and the accuracy of elastic behaviors characterization within theoretical method as regards to it seniority. We have performed self-consistent calculations to investigate the elastic and mechanical properties of ZnS. The numerical processing model of the application of orthorhombic and monoclinic constraints via Mehl method which enable the identification of all the elastic stiffness coefficients (C11, C12 and C44) of an cubic material, is described. The reliability and accuracy of the identification are discussed. In addition, other mechanical properties including: bulk modulus (B), Kleinman parameter (ζ), Shear (G) and Young (E) moduli, Poisson’s ratio (υ), Lame’s coefficients (λ and μ), Debye temperature (ϴD) and anisotropy factor (A) are calculated for both structures of ZnS Zinc-blende (B3) and Rocksalt (B1). The elastic and mechanical properties of ZnS at ambient conditions and under high pressure are successfully obtained. The trends in physical properties are also discussed and compared with the available results. Our results are in reasonable agreement with the available theoretical and experimental works.


Density functional theory Elastic properties Mechanical properties Cubic ZnS Mehl method 



Dr: A. Bendjedid and Pr: Dj. Miroud are gratefully acknowledged.


  1. Abell BC, Shao S, Pyrak-Nolte LJ (2014) Measurements of elastic constants in anisotropic media. Geophysics 79(5):D349–D362CrossRefGoogle Scholar
  2. Adachi S (2004) Handbook on physical properties of semiconductors, vol 2. Springer, BerlinGoogle Scholar
  3. Ali Sahraoui F, Zerroug S, Louail L, Maouche D (2007) Effect of pressure on the structural and elastic properties of ZnS and MgS alloys in the B3 and B1 phases. Mater Lett 61(10):1978–1981. Scholar
  4. Baste S (1999) Determination of elastic properties by an ultrasonic technique. In: Paper read at proceedings of the 12th international conference on composite materials, ParisGoogle Scholar
  5. Bilge M, Özdemir Kart S, Kart HH, Cagin T (2008a) Mechanical and electronical properties of ZnS under pressure. J Achievements Mater Manufact Eng 31(1):29–34Google Scholar
  6. Bilge M, Özdemir Kart S, Kart HH, Çağın T (2008b) B3–B1 phase transition and pressure dependence of elastic properties of ZnS. Mater Chem Phys 111(2–3):559–564. Scholar
  7. Casali RA, Christensen NE (1998) Elastic constants and deformation potentials of ZnS and ZnSe under pressure. Solid State Commun 108(10):793–798. Scholar
  8. Chen W, Wang Z, Lin Z, Lin L (1997) Thermoluminescence of ZnS nanoparticles. Appl Phys Lett 70(11):1465–1467. Scholar
  9. Chen X-R, Li X-F, Cai L-C, Zhu J (2006) Pressure induced phase transition in ZnS. Solid State Commun 139(5):246–249. Scholar
  10. Chen H, Shi D, Shi, Qi J, Wang B (2009) Electronic and mechanical properties of ZnS nanowires with different surface adsorptions. Phys E 42:32–37Google Scholar
  11. Fang X, Zhai T, Gautam UK, Li L, Limin W, Bando Y, Golberg D (2011) ZnS nanostructures: from synthesis to applications. Prog Mater Sci 56(2):175–287CrossRefGoogle Scholar
  12. Harris DC, Baronowski M, Henneman L, LaCroix L, Wilson C, Kurzius S, Burns B, Kitagawa K, Gembarovic J, Goodrich SM (2008) Thermal, structural, and optical properties of Cleartran® multispectral zinc sulfide. Opt Eng 47(11):114001–1140015Google Scholar
  13. Kanoun MB (2004) First-principles study of structural, elastic and electronic properties of AlN and GaN semiconductors under pressure effect and magnetism in AlN. Doctor’s thesis. Option: Materials Science. Abou-Bakr Belkaid University-TlemcenGoogle Scholar
  14. Khenata R, Bouhemadou A, Sahnoun M, Reshak AH, Baltache H, Rabah M (2006) Elastic, electronic and optical properties of ZnS, ZnSe and ZnTe under pressure. Comput Mater Sci 38(1):29–38. Scholar
  15. Mehl MJ, Klein BM, Papaconstantopoulos DA (1994) First principles calculations of elastic properties of metals, vol 1. Wiley, LondonGoogle Scholar
  16. Nouri R (2010) Etude par spectroscopie de rétrodiffusion Rutherford de l’implantation ionique de Sb+ dans Si. Effet de l’orientation du détecteur sur les spectres obtenus. Mémoire de Magister en Physique, Spécialité: Sciences des Matériaux, Option: Semi-conducteurs, Université Mentouri de ConstantineGoogle Scholar
  17. Nouri R et al (2017a) Investigation of opto-é”electronic properties of ZnS polymorphs through modified Becke-Johnson exchange potential. Optik—Int J Light Electron Opt 130:1004–1013. doi:
  18. Nouri R et al (2017b) Structural, elastic and mechanical properties of ZnS. In: 6th Algerian congress of mechanics, CAM2017Google Scholar
  19. Osburn JE, Mehl MJ, Klein BM (1991) First-principles calculation of the elastic moduli of Ni3Al. Phys Rev B 43(2):1805CrossRefGoogle Scholar
  20. Ouahrani T (2011) Calcul des propriétés structurales, thermiques et optiques des composés chalcopyrites par la méthode FP-(L)APW, Thèse de Doctorat en Physique, Spécialité: Matière condensée et Semi-conducteur, Université Abou Bakr Bel-Kaïd -Tlemcen, AlgérieGoogle Scholar
  21. Sabah C (2009) Etude Théorique des Propriétés Electroniques, Structurales et Elastiques des Semi-Conducteurs et leurs Super-réseaux Mémoire de Magister. Spécialité: physique, Option: Sciences des matériaux, Université de Mouhamed Boudiaf de M’sila, AlgérieGoogle Scholar
  22. Sharma R, Bisen DP, Brahme N, Chandra BP (2011a) Mechanoluminescence glow curve of ZnS: Mn nanocrystals prepared by chemical route. Digest J Nanomater Biostruct 6:499–506Google Scholar
  23. Sharma Ravi, Bisen DP, Dhoble SJ, Brahme N, Chandra BP (2011b) Mechanoluminescence and thermoluminescence of Mn doped ZnS nanocrystals. J Lumin 131(10):2089–2092CrossRefGoogle Scholar
  24. Tropf WJ, Thomas ME, Harris TJ (1995) Properties of crystals and glasses. Handb Opt 2(33):61Google Scholar
  25. Wang J, Isshiki M (2006) Wide-bandgap II–VI semiconductors: growth and properties. In: Springer handbook of electronic and photonic materials. Springer, Berlin, pp 325–342Google Scholar
  26. Wang HY, Cao J, Huang XY, Huang JM (2012) Pressure dependence of elastic and dynamical properties of zinc-blende ZnS and ZnSe from first principle calculation. arXiv preprint arXiv:1204.6102 15:1–10.
  27. Xu Y-N, Ching WY (1993) Electronic, optical, and structural properties of some wurtzite crystals. Phys Rev B 48(7):4335–4351CrossRefGoogle Scholar
  28. Zerarga F (2008) Contribution à l’étude des propriétés structurales, électroniques et élastiques de quelques spinelles All B2 lll O4, Mémoire de Magister. Spécialité: physique, Option: Sciences des matériaux, Université de Mouhamed Boudiaf de M’sila, AlgérieGoogle Scholar
  29. Zerarga F, Bouhemadou A, Khenata R, Binomran S (2011) FP-LAPW study of the structural, elastic and thermodynamic properties of spinel oxides ZnX2O4 (X=Al, Ga, In). Comput Mater Sci 50(9):2651–2657CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • R. Nouri
    • 1
    • 3
    Email author
  • R. Belkacemi
    • 2
  • S. Ghemid
    • 2
  • H. Meradji
    • 2
  • R. Chemam
    • 2
  1. 1.Department of Physics, Faculty of Exact SciencesBrothers Mentouri Constantine 1 UniversityConstantineAlgeria
  2. 2.Badji Mokhtar Annaba UniversityAnnabaAlgeria
  3. 3.Chadli Ben Djedid UniversityEl TarfAlgeria

Personalised recommendations