Advertisement

Pathophysiology of Type 2 Diabetes

  • Jothydev Kesavadev
  • Fatema Jawad
  • Asma Deeb
  • Ankia Coetzee
  • M. A. Jalil Ansari
  • Dina Shrestha
  • Noel Somasundaram
  • Sanjay Kalra
Chapter

Abstract

While in the earlier times type 2 diabetes (T2D) was only considered as a disease related to a disturbance in the functioning of the pancreas, lots of evidences accumulated during the past few decades revealed a plethora of additional factors that contribute to this devastating disease. The understanding of T2D has evolved from recognizing the duo of pancreatic β-cell failure with defective insulin secretion and insulin resistance (IR), to the triumvirate with the addition of hepatic gluconeogenesis. Recently, the ominous octet (addition of deranged adipocyte metabolism, incretin defect, increased glucagon secretion, increased renal glucose reabsorption, and neurotransmitter dysfunction and central appetite dysregulation) and of later the dirty dozen (addition of dopamine, vitamin D, testosterone and renin-angiotensin system) elaborated on the prior simplistic disease models. Furthermore, with the addition of the gut, the unlucky thirteen, suggests that the contributing factors toward T2D pathogenesis are still in the process of being identified [1–9]. In this chapter, we will explore the various factors that have been identified or are being proposed as the underlying contributors to the pathogenesis and pathophysiology of T2D.

Keywords

Glucose homeostasis Insulin resistance Beta cell failure Adipocyte metabolism Incretin action Glucagon secretion Renal glucose absorption Central appetite dysregulation Dopamine Vitamin D Testosterone Rennin-angiotensin system The unlucky thirteen 

References

  1. 1.
    DeFronzo RA. The triumvirate: β-cell, muscle, liver: a collusion responsible for NIDDM. Diabetes. 1988;37(6):667–87.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    DeFronzo RA. Pathogenesis of type 2 diabetes: metabolic and molecular implications for identifying diabetes genes. Diabetes Rev. 1997;5:177–269.Google Scholar
  3. 3.
    DeFronzo RA. From the triumvirate to the ominous octet: a new paradigm for the treatment of type 2 diabetes mellitus. Diabetes. 2009;58(4):773–95.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    DeFronzo RA, Triplitt CL, Abdul-Ghani M, Cersosimo E. Novel agents for the treatment of type 2 diabetes. Diabetes Spectr. 2014;27(2):100–12.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Kalra S. Recent advances in pathophysiology of diabetes: beyond the dirty dozen. J Pak Med Assoc. 2013;63(2):277–80.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Kalra S, Chawla R, Madhu S. The dirty dozen of diabetes. Indian J Endocrinol Metab. 2013;17(3):367.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Somasundaram NP, Wijesinghe AM. Therapy for type 2 diabetes mellitus: targeting the ‘Unlucky Thirteen’. Jacobs J Diabetes Endocrinol. 2016;2(1):12.Google Scholar
  8. 8.
    Kahn SE, Cooper ME, Del Prato S. Pathophysiology and treatment of type 2 diabetes: perspectives on the past, present, and future. Lancet. 2014;383(9922):1068–83.PubMedCrossRefGoogle Scholar
  9. 9.
    Nolan CJ, Damm P, Prentki M. Type 2 diabetes across generations: from pathophysiology to prevention and management. Lancet. 2011;378(9786):169–81.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Tripathy D, Thripathy BB, Chandalia HB. Pathogenesis of type 2 diabetes. In: Chandalia HB, editor. RSSDI textbook of diabetes mellitus. New Delhi: Jaypee Brothers, Medical Publishers Pvt. Limited; 2014.Google Scholar
  11. 11.
    Chawla R. Type 2 diabetes: etiology and pathogenesis. In: Chawla R, editor. Manual of diabetes care. New Delhi: Jaypee Brothers, Medical Publishers Pvt. Limited; 2014.CrossRefGoogle Scholar
  12. 12.
    Groop L, Lyssenko V. Genes and type 2 diabetes mellitus. Curr Diab Rep. 2008;8(3):192.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    DeFronzo RA, Ferrannini E, Simonson DC. Fasting hyperglycemia in non-insulin-dependent diabetes mellitus: contributions of excessive hepatic glucose production and impaired tissue glucose uptake. Metabolism. 1989;38(4):387–95.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Ferrannini E, Simonson DC, Katz LD, Reichard G Jr, Bevilacqua S, Barrett EJ, et al. The disposal of an oral glucose load in patients with non-insulin-dependent diabetes. Metabolism. 1988;37(1):79–85.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    James W. The fundamental drivers of the obesity epidemic. Obes Rev. 2008;9(s1):6–13.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Defronzo RA, Soman V, Sherwin RS, Hendler R, Felig P. Insulin binding to monocytes and insulin action in human obesity, starvation, and refeeding. J Clin Invest. 1978;62(1):204–13.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Diamond MP, Thornton K, Connolly-Diamond M, Sherwin RS, DeFronzo RA. Reciprocal variations in insulin-stimulated glucose uptake and pancreatic insulin secretion in women with normal glucose tolerance. J Soc Gynecol Investig. 1995;2(5):708–15.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    DeFronzo RA, Eldor R, Abdul-Ghani M. Pathophysiologic approach to therapy in patients with newly diagnosed type 2 diabetes. Diabetes Care. 2013;36(Suppl 2):S127–S38.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    De Fronzo RA, Ferrannini E, Keen H, Zimmet P. International textbook of diabetes mellitus. Chichester, West Sussex UK; Wiley, 2004.Google Scholar
  20. 20.
    Reaven G, Hollenbeck C, Chen Y-D. Relationship between glucose tolerance, insulin secretion, and insulin action in non-obese individuals with varying degrees of glucose tolerance. Diabetologia. 1989;32(1):52–5.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Saad M, Pettitt D, Mott D, Knowler W, Nelson R, Bennett P. Sequential changes in serum insulin concentration during development of non-insulin-dependent diabetes. Lancet. 1989;333(8651):1356–9.CrossRefGoogle Scholar
  22. 22.
    Weyer C, Tataranni PA, Bogardus C, Pratley RE. Insulin resistance and insulin secretory dysfunction are independent predictors of worsening of glucose tolerance during each stage of type 2 diabetes development. Diabetes Care. 2001;24(1):89–94.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Ferrannini E, Natali A, Muscelli E, Nilsson P, Golay A, Laakso M, et al. Natural history and physiological determinants of changes in glucose tolerance in a non-diabetic population: the RISC Study. Diabetologia. 2011;54(6):1507–16.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Cinti F, Bouchi R, Kim-Muller JY, Ohmura Y, Sandoval PR, Masini M, et al. Evidence of β-cell dedifferentiation in human type 2 diabetes. J Clin Endocrinol Metab. 2016;101(3):1044–54.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    De Tata V. Age-related impairment of pancreatic Beta-cell function: pathophysiological and cellular mechanisms. Front Endocrinol. 2014;5:138.Google Scholar
  26. 26.
    Vauhkonen I, Niskanen L, Vanninen E, Kainulainen S, Uusitupa M, Laakso M. Defects in insulin secretion and insulin action in non-insulin-dependent diabetes mellitus are inherited. Metabolic studies on offspring of diabetic probands. J Clin Invest. 1998;101(1):86–96.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Lyssenko V, Lupi R, Marchetti P, Del Guerra S, Orho-Melander M, Almgren P, et al. Mechanisms by which common variants in the TCF7L2 gene increase risk of type 2 diabetes. J Clin Invest. 2007;117(8):2155–63.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    DeFronzo RA, Ferrannini E, Alberti KGMM, Zimmet P, Alberti G. International textbook of diabetes mellitus, 2 Volume Set. New York: Wiley; 2015.CrossRefGoogle Scholar
  29. 29.
    Montane J, Klimek-Abercrombie A, Potter K, Westwell-Roper C, Bruce VC. Metabolic stress, IAPP and islet amyloid. Diabetes Obes Metab. 2012;14(s3):68–77.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Westermark P, Andersson A, Westermark GT. Islet amyloid polypeptide, islet amyloid, and diabetes mellitus. Physiol Rev. 2011;91(3):795–826.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Matthaei S, Stumvoll M, Kellerer M, Häring H-U. Pathophysiology and pharmacological treatment of insulin resistance. Endocr Rev. 2000;21(6):585–618.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Groop LC, Bonadonna RC, DelPrato S, Ratheiser K, Zyck K, Ferrannini E, et al. Glucose and free fatty acid metabolism in non-insulin-dependent diabetes mellitus. Evidence for multiple sites of insulin resistance. J Clin Invest. 1989;84(1):205–13.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    DeFronzo R, Davidson J, Del Prato S. The role of the kidneys in glucose homeostasis: a new path towards normalizing glycaemia. Diabetes Obes Metab. 2012;14(1):5–14.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Müller C, Assimacopoulos-Jeannet F, Mosimann F, Schneiter P, Riou J, Pachiaudi C, et al. Endogenous glucose production, gluconeogenesis and liver glycogen concentration in obese non-diabetic patients. Diabetologia. 1997;40(4):463–8.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    DeFronzo RA, Gunnarsson R, Björkman O, Olsson M, Wahren J. Effects of insulin on peripheral and splanchnic glucose metabolism in noninsulin-dependent (type II) diabetes mellitus. J Clin Invest. 1985;76(1):149–55.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Pendergrass M, Bertoldo A, Bonadonna R, Nucci G, Mandarino L, Cobelli C, et al. Muscle glucose transport and phosphorylation in type 2 diabetic, obese nondiabetic, and genetically predisposed individuals. Am J Physiol Endocrinol Metab. 2007;292(1):E92–E100.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Tripathy D, Eriksson K-F, Orho-Melander M, Fredriksson J, Ahlqvist G, Groop L. Parallel manifestation of insulin resistance and beta cell decompensation is compatible with a common defect in Type 2 diabetes. Diabetologia. 2004;47(5):782–93.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Reaven G. The fourth musketeer—from Alexandre Dumas to Claude Bernard. Diabetologia. 1995;38(1):3–13.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Bays HE, González-Campoy JM, Bray GA, Kitabchi AE, Bergman DA, Schorr AB, et al. Pathogenic potential of adipose tissue and metabolic consequences of adipocyte hypertrophy and increased visceral adiposity. Expert Rev Cardiovasc Ther. 2008;6(3):343–68.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Massillon D, Barzilai N, Hawkins M, Prus-Wertheimer D, Rossetti L. Induction of hepatic glucose-6-phosphatase gene expression by lipid infusion. Diabetes. 1997;46(1):153–7.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Johnson AM, Olefsky JM. The origins and drivers of insulin resistance. Cell. 2013;152(4):673–84.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Rebrin K, Steil GM, Getty L, Bergman RN. Free fatty acid as a link in the regulation of hepatic glucose output by peripheral insulin. Diabetes. 1995;44(9):1038–45.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB, et al. Identification and importance of brown adipose tissue in adult humans. N Engl J Med. 2009;360(15):1509–17.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Kwon H, Kim D, Kim JS. Body fat distribution and the risk of incident metabolic syndrome: a longitudinal cohort study. Sci Rep. 2017;7(1):10955.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Matsuda M, DeFronzo RA, Glass L, Consoli A, Giordano M, Bressler P, et al. Glucagon dose-response curve for hepatic glucose production and glucose disposal in type 2 diabetic patients and normal individuals. Metabolism. 2002;51(9):1111–9.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Unger RH, Aguilar-Parada E, Müller WA, Eisentraut AM. Studies of pancreatic alpha cell function in normal and diabetic subjects. J Clin Invest. 1970;49(4):837–48.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Reaven G, Chen Y-D, Golay A, Swislocki A, Jaspan J. Documentation of hyperglucagonemia throughout the day in nonobese and obese patients with noninsulin-dependent diabetes mellitus. J Clin Endocrinol Metabol. 1987;64(1):106–10.CrossRefGoogle Scholar
  48. 48.
    Henquin J-C, Rahier J. Pancreatic alpha cell mass in European subjects with type 2 diabetes. Diabetologia. 2011;54(7):1720–5.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Müller WA, Faloona GR, Aguilar-Parada E, Unger RH. Abnormal alpha-cell function in diabetes: response to carbohydrate and protein ingestion. N Engl J Med. 1970;283(3):109–15.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Baron AD, Schaeffer L, Shragg P, Kolterman OG. Role of hyperglucagonemia in maintenance of increased rates of hepatic glucose output in type II diabetics. Diabetes. 1987;36(3):274–83.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Müller WA, Faloona GR, Unger RH. Hyperglucagonemia in diabetic ketoacidosis: its prevalence and significance. Am J Med. 1973;54(1):52–7.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Dobbs R, Sakurai H, Sasaki H, Faloona G, Valverde I, Baetens D, et al. Glucagon: role in the hyperglycemia of diabetes mellitus. Science. 1975;187(4176):544–7.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Gerich JE, Lorenzi M, Bier DM, Schneider V, Tsalikian E, Karam JH, et al. Prevention of human diabetic ketoacidosis by somatostatin: evidence for an essential role of glucagon. N Engl J Med. 1975;292(19):985–9.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Stevenson RW, Steiner KE, Davis M, Hendrick G, Williams P, Lacy WW, et al. Similar dose responsiveness of hepatic glycogenolysis and gluconeogenesis to glucagon in vivo. Diabetes. 1987;36(3):382–9.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Lee Y, Wang M-Y, Du XQ, Charron MJ, Unger RH. Glucagon receptor knockout prevents insulin-deficient type 1 diabetes in mice. Diabetes. 2011;60(2):391–7.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Htike ZZ, Zaccardi F, Papamargaritis D, Webb DR, Khunti K, Davies MJ. Efficacy and safety of glucagon-like peptide-1 receptor agonists in type 2 diabetes: a systematic review and mixed-treatment comparison analysis. Diabetes Obes Metab. 2017;19(4):524–36.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Mu J, Qureshi SA, Brady EJ, Muise ES, Candelore MR, Jiang G, et al. Anti-diabetic efficacy and impact on amino acid metabolism of GRA1, a novel small-molecule glucagon receptor antagonist. PLoS One. 2012;7(11):e49572.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Scheen AJ, Paquot N, Lefèbvre PJ. Investigational glucagon receptor antagonists in Phase I and II clinical trials for diabetes. Expert Opin Investig Drugs. 2017;26(12):1373–89.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Drucker DJ. The biology of incretin hormones. Cell Metab. 2006;3(3):153–65.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Meier JJ, Nauck MA. Incretins and the development of type 2 diabetes. Curr Diab Rep. 2006;6(3):194–201.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Suzuki K, Simpson KA, Minnion JS, Shillito JC, Bloom SR. The role of gut hormones and the hypothalamus in appetite regulation. Endocr J. 2010;57(5):359–72.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Baggio LL, Drucker DJ. Biology of incretins: GLP-1 and GIP. Gastroenterology. 2007;132(6):2131–57.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Schwartz JG, Green GM, Guan D, McMahan CA, Phillips WT. Rapid gastric emptying of a solid pancake meal in type II diabetic patients. Diabetes Care. 1996;19(5):468–71.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Nauck M, Vardarli I, Deacon C, Holst JJ, Meier J. Secretion of glucagon-like peptide-1 (GLP-1) in type 2 diabetes: what is up, what is down? Diabetologia. 2011;54(1):10–8.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Meier JJ, Nauck MA. Is the diminished incretin effect in type 2 diabetes just an epi-phenomenon of impaired β-cell function? Diabetes. 2010;59(5):1117–25.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Nauck M, Stöckmann F, Ebert R, Creutzfeldt W. Reduced incretin effect in type 2 (non-insulin-dependent) diabetes. Diabetologia. 1986;29(1):46–52.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Quddusi S, Vahl TP, Hanson K, Prigeon RL, D’Alessio DA. Differential effects of acute and extended infusions of glucagon-like peptide-1 on first-and second-phase insulin secretion in diabetic and nondiabetic humans. Diabetes Care. 2003;26(3):791–8.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Nauck M. Incretin therapies: highlighting common features and differences in the modes of action of glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors. Diabetes Obes Metab. 2016;18(3):203–16.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Abdul-Ghani M, DeFronzo R. Inhibition of renal glucose reabsorption: a novel strategy for achieving glucose control in type 2 diabetes mellitus. Endocr Pract. 2008;14(6):782–90.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Noonan W, Shapiro V, Banks R. Renal glucose reabsorption during hypertonic glucose infusion in female streptozotocin-induced diabetic rats. Life Sci. 2001;68(26):2967–77.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Dominguez JH, Camp K, Maianu L, Feister H, Garvey WT. Molecular adaptations of GLUT1 and GLUT2 in renal proximal tubules of diabetic rats. Am J Physiol-Renal Physiol. 1994;266(2):F283–F90.CrossRefGoogle Scholar
  72. 72.
    Mogensen C. Maximum tubular reabsorption capacity for glucose and renal hemodynamics during rapid hypertonic glucose infusion in normal and diabetic subjects. Scand J Clin Lab Invest. 1971;28(1):101–9.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Farber SJ, Berger EY, Earle DP. Effect of diabetes and insulin on the maximum capacity of the renal tubules to reabsorb glucose. J Clin Invest. 1951;30(2):125–9.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Hanley AJ, Williams K, Stern MP, Haffner SM. Homeostasis model assessment of insulin resistance in relation to the incidence of cardiovascular disease: the San Antonio Heart Study. Diabetes Care. 2002;25(7):1177–84.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Scheen AJ. Pharmacodynamics, efficacy and safety of sodium–glucose co-transporter type 2 (SGLT2) inhibitors for the treatment of type 2 diabetes mellitus. Drugs. 2015;75(1):33–59.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Song P, Onishi A, Koepsell H, Vallon V. Sodium glucose cotransporter SGLT1 as a therapeutic target in diabetes mellitus. Expert Opin Ther Targets. 2016;20(9):1109–25.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Cariou B, Charbonnel B. Sotagliflozin as a potential treatment for type 2 diabetes mellitus. Expert Opin Investig Drugs. 2015;24(12):1647–56.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Nonogaki K. New insights into sympathetic regulation of glucose and fat metabolism. Diabetologia. 2000;43(5):533–49.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Miller RE. Pancreatic neuroendocrinology: peripheral neural mechanisms in the regulation of the islets of Langerhans. Endocr Rev. 1981;2(4):471–94.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Berthoud H-R, Jeanrenaud B. Acute hyperinsulinemia and its reversal by vagotomy after lesions of the ventromedial hypothalamus in anesthetized rats. Endocrinology. 1979;105(1):146–51.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Plum L, Belgardt BF, Brüning JC. Central insulin action in energy and glucose homeostasis. J Clin Invest. 2006;116(7):1761–6.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Matsuda M, Liu Y, Mahankali S, Pu Y, Mahankali A, Wang J, et al. Altered hypothalamic function in response to glucose ingestion in obese humans. Diabetes. 1999;48(9):1801–6.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Obici S, Feng Z, Karkanias G, Baskin DG, Rossetti L. Decreasing hypothalamic insulin receptors causes hyperphagia and insulin resistance in rats. Nat Neurosci. 2002;5(6):566.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Obici S, Feng Z, Tan J, Liu L, Karkanias G, Rossetti L. Central melanocortin receptors regulate insulin action. J Clin Invest. 2001;108(7):1079–85.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Thaler JP, Yi C-X, Schur EA, Guyenet SJ, Hwang BH, Dietrich MO, et al. Obesity is associated with hypothalamic injury in rodents and humans. J Clin Invest. 2012;122(1):153–62.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    DeFronzo RA. Bromocriptine: a sympatholytic, D2-dopamine agonist for the treatment of type 2 diabetes. Diabetes Care. 2011;34(4):789–94.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Young A, Gedulin B, Vine W, Percy A, Rink T. Gastric emptying is accelerated in diabetic BB rats and is slowed by subcutaneous injections of amylin. Diabetologia. 1995;38(6):642–8.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Ryan G, Briscoe TA, Jobe L. Review of pramlintide as adjunctive therapy in treatment of type 1 and type 2 diabetes. Drug Des Devel Ther. 2008;2:203.CrossRefGoogle Scholar
  89. 89.
    Bass J, Takahashi JS. Circadian integration of metabolism and energetics. Science. 2010;330(6009):1349–54.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Hanlon EC, Van Cauter E. Quantification of sleep behavior and of its impact on the cross-talk between the brain and peripheral metabolism. Proc Natl Acad Sci U S A. 2011;108(Supplement 3):15609–16.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Kalra S, Kalra B, Agrawal N, Kumar S. Dopamine: the forgotten felon in type 2 diabetes. Recent Pat Endocr Metab Immune Drug Discov. 2011;5(1):61–5.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Luo S, Luo J, Meier AH, Cincotta AH. Dopaminergic neurotoxin administration to the area of the suprachiasmatic nuclei induces insulin resistance. Neuroreport. 1997;8(16):3495–9.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Cincotta AH. 16. Hypothalamic Role in the insulin resistance syndrome. Insulin resistance and insulin resistance syndrome. 2002;5:271.Google Scholar
  94. 94.
    Luo S, Meier AH, Cincotta AH. Bromocriptine reduces obesity, glucose intolerance and extracellular monoamine metabolite levels in the ventromedial hypothalamus of Syrian hamsters. Neuroendocrinology. 1998;68(1):1–10.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Scislowski P, Tozzo E, Zhang Y, Phaneuf S, Prevelige R, Cincotta A. Biochemical mechanisms responsible for the attenuation of diabetic and obese conditions in ob/ob mice treated with dopaminergic agonists. Int J Obes (Lond). 1999;23(4):425.CrossRefGoogle Scholar
  96. 96.
    Luo S, Liang Y, Cincotta A. Intracerebroventricular administration of bromocriptine ameliorates the insulin-resistant/glucose-intolerant state in hamsters. Neuroendocrinology. 1999;69(3):160–6.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Pijl H, Ohashi S, Matsuda M, Miyazaki Y, Mahankali A, Kumar V, et al. Bromocriptine: a novel approach to the treatment of type 2 diabetes. Diabetes Care. 2000;23(8):1154–61.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Harinarayan CV. Vitamin D and diabetes mellitus. Hormones (Athens). 2014;13(2):163–81.CrossRefGoogle Scholar
  99. 99.
    Mathieu C. Vitamin D and diabetes: where do we stand? Diabetes Res Clin Pract. 2015;108(2):201–9.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Rabinovitch A, Suarez-Pinzon WL, Sooy K, Strynadka K, Christakos S. Expression of calbindin-D28k in a pancreatic Isletβ-Cell line protects against cytokine-induced apoptosis and necrosis. Endocrinology. 2001;142(8):3649–55.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Hyppönen E, Läärä E, Reunanen A, Järvelin M-R, Virtanen SM. Intake of vitamin D and risk of type 1 diabetes: a birth-cohort study. Lancet. 2001;358(9292):1500–3.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Teegarden D, Donkin SS. Vitamin D: emerging new roles in insulin sensitivity. Nutr Res Rev. 2009;22(1):82–92.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Herrmann M, Sullivan DR, Veillard A-S, McCorquodale T, Straub IR, Scott R, et al. Serum 25-hydroxyvitamin D: a predictor of macrovascular and microvascular complications in patients with type 2 diabetes. Diabetes Care. 2015;38(3):521–8.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Pacifico L, Anania C, Osborn JF, Ferraro F, Bonci E, Olivero E, et al. Low 25 (OH) D3 levels are associated with total adiposity, metabolic syndrome, and hypertension in Caucasian children and adolescents. Eur J Endocrinol. 2011;165(4):603–11.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Talaei A, Mohamadi M, Adgi Z. The effect of vitamin D on insulin resistance in patients with type 2 diabetes. Diabetol Metab Syndr. 2013;5(1):8.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Mitri J, Dawson-Hughes B, Hu FB, Pittas AG. Effects of vitamin D and calcium supplementation on pancreatic β cell function, insulin sensitivity, and glycemia in adults at high risk of diabetes: the Calcium and Vitamin D for Diabetes Mellitus (CaDDM) randomized controlled trial. Am J Clin Nutr. 2011;94(2):486–94.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Underwood PC, Adler GK. The renin angiotensin aldosterone system and insulin resistance in humans. Curr Hypertens Rep. 2013;15(1):59–70.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Goossens GH. The renin-angiotensin system in the pathophysiology of type 2 diabetes. Obes Facts. 2012;5(4):611–24.PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Grassi G, Seravalle G, Dell’Oro R, Trevano FQ, Bombelli M, Scopelliti F, et al. Comparative effects of candesartan and hydrochlorothiazide on blood pressure, insulin sensitivity, and sympathetic drive in obese hypertensive individuals: results of the CROSS study. J Hypertens. 2003;21(9):1761–9.PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Jin H-M, Pan Y. Angiotensin type-1 receptor blockade with losartan increases insulin sensitivity and improves glucose homeostasis in subjects with type 2 diabetes and nephropathy. Nephrol Dial Transplant. 2007;22(7):1943–9.PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Santoro D, Natali A, Palombo C, Brandi LS, Piatti M, Ghione S, et al. Effects of chronic angiotensin converting enzyme inhibition on glucose tolerance and insulin sensitivity in essential hypertension. Hypertension. 1992;20(2):181–91.PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Investigators HOPES. Effects of ramipril on cardiovascular and microvascular outcomes in people with diabetes mellitus: results of the HOPE study and MICRO-HOPE substudy. Lancet. 2000;355(9200):253–9.CrossRefGoogle Scholar
  113. 113.
    Brenner BM, Cooper ME, de Zeeuw D, Keane WF, Mitch WE, Parving H-H, et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med. 2001;345(12):861–9.PubMedCrossRefGoogle Scholar
  114. 114.
    Lewis EJ, Hunsicker LG, Clarke WR, Berl T, Pohl MA, Lewis JB, et al. Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N Engl J Med. 2001;345(12):851–60.PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Müller M, Fasching P, Schmid R, Burgdorff T, Waldhäusl W, Eichler H. Inhibition of paracrine angiotensin-converting enzyme in vivo: effects on interstitial glucose and lactate concentrations in human skeletal muscle. Eur J Clin Invest. 1997;27(10):825–30.PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Frossard M, Joukhadar C, Steffen G, Schmid R, Eichler H, Müller M. Paracrine effects of angiotensin-converting-enzyme-and angiotensin-II-receptor-inhibition on transcapillary glucose transport in humans. Life Sci. 2000;66(10):PL147–PL54.PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Lupi R, Del Guerra S, Bugliani M, Boggi U, Mosca F, Torri S, et al. The direct effects of the angiotensin-converting enzyme inhibitors, zofenoprilat and enalaprilat, on isolated human pancreatic islets. Eur J Endocrinol. 2006;154(2):355–61.PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Furuhashi M, Ura N, Takizawa H, Yoshida D, Moniwa N, Murakami H, et al. Blockade of the renin–angiotensin system decreases adipocyte size with improvement in insulin sensitivity. J Hypertens. 2004;22(10):1977–82.PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Gillespie EL, White CM, Kardas M, Lindberg M, Coleman CI. The impact of ACE inhibitors or angiotensin II type 1 receptor blockers on the development of new-onset type 2 diabetes. Diabetes Care. 2005;28(9):2261–6.PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Investigators DT. Effect of ramipril on the incidence of diabetes. N Engl J Med. 2006;355(15):1551–62.CrossRefGoogle Scholar
  121. 121.
    Group NS. Effect of valsartan on the incidence of diabetes and cardiovascular events. N Engl J Med. 2010;362(16):1477–90.CrossRefGoogle Scholar
  122. 122.
    Hansson L, Lindholm LH, Ekbom T, Dahlöf B, Lanke J, Scherstén B, et al. Randomised trial of old and new antihypertensive drugs in elderly patients: cardiovascular mortality and morbidity the Swedish Trial in Old Patients with Hypertension-2 study. Lancet. 1999;354(9192):1751–6.PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Lindholm LH, Ibsen H, Borch-Johnsen K, Olsen MH, Wachtell K, Dahlöf B, et al. Risk of new-onset diabetes in the Losartan Intervention For Endpoint reduction in hypertension study. J Hypertens. 2002;20(9):1879–86.PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Daubresse J, Meunier J, Wilmotte J, Luyckx A, Lefebvre P. Pituitary-testicular axis in diabetic men with and without sexual impotence. Diabete Metab. 1978;4(4):233–7.PubMedPubMedCentralGoogle Scholar
  125. 125.
    Kapoor D, Aldred H, Clark S, Channer KS, Jones TH. Clinical and biochemical assessment of hypogonadism in men with type 2 diabetes: correlations with bioavailable testosterone and visceral adiposity. Diabetes Care. 2007;30(4):911–7.PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Corona G, Monami M, Rastrelli G, Aversa A, Sforza A, Lenzi A, et al. Type 2 diabetes mellitus and testosterone: a meta-analysis study. Int J Androl. 2011;34(6pt1):528–40.PubMedCrossRefPubMedCentralGoogle Scholar
  127. 127.
    Giagulli VA, Kaufman JM, Vermeulen A. Pathogenesis of the decreased androgen levels in obese men. J Clin Endocrinol Metabol. 1994;79(4):997–1000.Google Scholar
  128. 128.
    Grossmann M, Gianatti EJ, Zajac JD. Testosterone and type 2 diabetes. Curr Opin Endocrinol Diabetes Obes. 2010;17(3):247–56.PubMedCrossRefPubMedCentralGoogle Scholar
  129. 129.
    Zitzmann M. Testosterone deficiency, insulin resistance and the metabolic syndrome. Nat Rev Endocrinol. 2009;5(12):673.PubMedCrossRefPubMedCentralGoogle Scholar
  130. 130.
    Pitteloud N, Mootha VK, Dwyer AA, Hardin M, Lee H, Eriksson K-F, et al. Relationship between testosterone levels, insulin sensitivity, and mitochondrial function in men. Diabetes Care. 2005;28(7):1636–42.PubMedCrossRefPubMedCentralGoogle Scholar
  131. 131.
    Völzke H, Aumann N, Krebs A, Nauck M, Steveling A, Lerch MM, et al. Hepatic steatosis is associated with low serum testosterone and high serum DHEAS levels in men. Int J Androl. 2010;33(1):45–53.PubMedCrossRefPubMedCentralGoogle Scholar
  132. 132.
    Oury F, Sumara G, Sumara O, Ferron M, Chang H, Smith CE, et al. Endocrine regulation of male fertility by the skeleton. Cell. 2011;144(5):796–809.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Xu X, Pergola GD, Bjorntorp P. Testosterone increases lipolysis and the number of β-adrenoceptors in male rat adipocytes. Endocrinology. 1991;128(1):379–82.PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
    Mårin P, Oden B, Björntorp P. Assimilation and mobilization of triglycerides in subcutaneous abdominal and femoral adipose tissue in vivo in men: effects of androgens. J Clin Endocrinol Metabol. 1995;80(1):239–43.Google Scholar
  135. 135.
    Stellato RK, Feldman HA, Hamdy O, Horton ES, Mckinlay JB. Testosterone, sex hormone-binding globulin, and the development of type 2 diabetes in middle-aged men: prospective results from the Massachusetts male aging study. Diabetes Care. 2000;23(4):490–4.PubMedCrossRefPubMedCentralGoogle Scholar
  136. 136.
    Selvin E, Feinleib M, Zhang L, Rohrmann S, Rifai N, Nelson WG, et al. Androgens and diabetes in men: results from the Third National Health and Nutrition Examination Survey (NHANES III). Diabetes Care. 2007;30(2):234–8.PubMedCrossRefPubMedCentralGoogle Scholar
  137. 137.
    Wang C, Jackson G, Jones TH, Matsumoto AM, Nehra A, Perelman MA, et al. Low testosterone associated with obesity and the metabolic syndrome contributes to sexual dysfunction and cardiovascular disease risk in men with type 2 diabetes. Diabetes Care. 2011;34(7):1669–75.PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Ding EL, Song Y, Manson JE, Hunter DJ, Lee CC, Rifai N, et al. Sex hormone–binding globulin and risk of type 2 diabetes in women and men. N Engl J Med. 2009;361(12):1152–63.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Smith MR, Finkelstein JS, McGovern FJ, Zietman AL, Fallon MA, Schoenfeld DA, et al. Changes in body composition during androgen deprivation therapy for prostate cancer. J Clin Endocrinol Metabol. 2002;87(2):599–603.CrossRefGoogle Scholar
  140. 140.
    Hamilton E, Gianatti E, Strauss B, Wentworth J, Lim-Joon D, Bolton D, et al. Increase in visceral and subcutaneous abdominal fat in men with prostate cancer treated with androgen deprivation therapy. Clin Endocrinol (Oxf). 2011;74(3):377–83.CrossRefGoogle Scholar
  141. 141.
    Keating NL, O’malley AJ, Smith MR. Diabetes and cardiovascular disease during androgen deprivation therapy for prostate cancer. J Clin Oncol. 2006;24(27):4448–56.PubMedCrossRefPubMedCentralGoogle Scholar
  142. 142.
    Boyanov M, Boneva Z, Christov V. Testosterone supplementation in men with type 2 diabetes, visceral obesity and partial androgen deficiency. Aging Male. 2003;6(1):1–7.PubMedCrossRefPubMedCentralGoogle Scholar
  143. 143.
    Kapoor D, Goodwin E, Channer K, Jones T. Testosterone replacement therapy improves insulin resistance, glycaemic control, visceral adiposity and hypercholesterolaemia in hypogonadal men with type 2 diabetes. Eur J Endocrinol. 2006;154(6):899–906.PubMedCrossRefPubMedCentralGoogle Scholar
  144. 144.
    Heufelder AE, Saad F, Bunck MC, Gooren L. Fifty-two—week treatment with diet and exercise plus transdermal testosterone reverses the metabolic syndrome and improves glycemic control in men with newly diagnosed type 2 diabetes and subnormal plasma testosterone. J Androl. 2009;30(6):726–33.PubMedCrossRefPubMedCentralGoogle Scholar
  145. 145.
    Oh J-Y, Barrett-Connor E, Wedick NM, Wingard DL. Endogenous sex hormones and the development of type 2 diabetes in older men and women: the Rancho Bernardo study. Diabetes Care. 2002;25(1):55–60.PubMedCrossRefPubMedCentralGoogle Scholar
  146. 146.
    Fukui M, Kitagawa Y, Nakamura N, Yoshikawa T. Association between elevated testosterone and development of microalbuminuria during puberty in female subjects with type 1 diabetes. Response to Amin et al. 2003;26(10):2966–7.Google Scholar
  147. 147.
    Ding EL, Song Y, Malik VS, Liu S. Sex differences of endogenous sex hormones and risk of type 2 diabetes: a systematic review and meta-analysis. JAMA. 2006;295(11):1288–99.PubMedCrossRefPubMedCentralGoogle Scholar
  148. 148.
    Apridonidze T, Essah PA, Iuorno MJ, Nestler JE. Prevalence and characteristics of the metabolic syndrome in women with polycystic ovary syndrome. J Clin Endocrinol Metabol. 2005;90(4):1929–35.CrossRefGoogle Scholar
  149. 149.
    Joshi SR, Standl E, Tong N, Shah P, Kalra S, Rathod R. Therapeutic potential of α-glucosidase inhibitors in type 2 diabetes mellitus: an evidence-based review. Expert Opin Pharmacother. 2015;16(13):1959–81.PubMedCrossRefGoogle Scholar
  150. 150.
    Prawitt J, Caron S, Staels B. Bile acid metabolism and the pathogenesis of type 2 diabetes. Curr Diab Rep. 2011;11(3):160.PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Potthoff MJ, Kliewer SA, Mangelsdorf DJ. Endocrine fibroblast growth factors 15/19 and 21: from feast to famine. Genes Dev. 2012;26(4):312–24.PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Yamagata K, Daitoku H, Shimamoto Y, Matsuzaki H, Hirota K, Ishida J, et al. Bile acids regulate gluconeogenic gene expression via small heterodimer partner-mediated repression of hepatocyte nuclear factor 4 and Foxo1. J Biol Chem. 2004;279(22):23158–65.PubMedCrossRefPubMedCentralGoogle Scholar
  153. 153.
    Pols TW, Noriega LG, Nomura M, Auwerx J, Schoonjans K. The bile acid membrane receptor TGR5: a valuable metabolic target. Dig Dis. 2011;29(1):37–44.PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Meyer-Gerspach A, Steinert R, Keller S, Malarski A, Schulte F, Beglinger C. Effects of chenodeoxycholic acid on the secretion of gut peptides and fibroblast growth factors in healthy humans. J Clin Endocrinol Metabol. 2013;98(8):3351–8.CrossRefGoogle Scholar
  155. 155.
    Sonne DP, Hansen M, Knop FK. Mechanisms in endocrinology: bile acid sequestrants in type 2 diabetes: potential effects on GLP1 secretion. Eur J Endocrinol. 2014;171(2):R47–65.PubMedCrossRefPubMedCentralGoogle Scholar
  156. 156.
    Staels B. A review of bile acid sequestrants: potential mechanism (s) for glucose-lowering effects in type 2 diabetes mellitus. Postgrad Med. 2009;121(Suppl 1):25–30.PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Aw W, Fukuda S. Understanding the role of the gut ecosystem in diabetes mellitus. J Diabetes Investig. 2018;9(1):5–12.PubMedCrossRefPubMedCentralGoogle Scholar
  158. 158.
    Sohail MU, Althani A, Anwar H, Rizzi R, Marei HE. Role of the gastrointestinal tract microbiome in the pathophysiology of diabetes mellitus. J Diabetes Res. 2017;2017Google Scholar
  159. 159.
    Fukui H. The gut impacts diabetic management tomorrow: the recent messages from intestine and microbiota. J Clin Nutr Diet. 2016;2(4):20.CrossRefGoogle Scholar
  160. 160.
    Zhang X, Shen D, Fang Z, Jie Z, Qiu X, Zhang C, et al. Human gut microbiota changes reveal the progression of glucose intolerance. PLoS One. 2013;8(8):e71108.PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Larsen N, Vogensen FK, van den Berg FW, Nielsen DS, Andreasen AS, Pedersen BK, et al. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS One. 2010;5(2):e9085.PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    Vrieze A, Out C, Fuentes S, Jonker L, Reuling I, Kootte RS, et al. Impact of oral vancomycin on gut microbiota, bile acid metabolism, and insulin sensitivity. J Hepatol. 2014;60(4):824–31.PubMedCrossRefPubMedCentralGoogle Scholar
  163. 163.
    Hamer HM, Jonkers D, Venema K, Vanhoutvin S, Troost F, Brummer RJ. The role of butyrate on colonic function. Aliment Pharmacol Ther. 2008;27(2):104–19.PubMedCrossRefPubMedCentralGoogle Scholar
  164. 164.
    Peng L, Li Z-R, Green RS, Holzman IR, Lin J. Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in Caco-2 cell monolayers. J Nutr. 2009;139(9):1619–25.PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Lefebvre P, Cariou B, Lien F, Kuipers F, Staels B. Role of bile acids and bile acid receptors in metabolic regulation. Physiol Rev. 2009;89(1):147–91.PubMedCrossRefPubMedCentralGoogle Scholar
  166. 166.
    Vrieze A, Van Nood E, Holleman F, Salojärvi J, Kootte RS, Bartelsman JF, et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology. 2012;143(4):913–6. e7.PubMedCrossRefPubMedCentralGoogle Scholar
  167. 167.
    Anderson GJ. Mechanisms of iron loading and toxicity. Am J Hematol. 2007;82(S12):1128–31.PubMedCrossRefPubMedCentralGoogle Scholar
  168. 168.
    Simcox JA, McClain DA. Iron and diabetes risk. Cell Metab. 2013;17(3):329–41.PubMedPubMedCentralCrossRefGoogle Scholar
  169. 169.
    Buysschaert M, Paris I, Selvais P, Hermans M. Clinical aspects of diabetes secondary to idiopathic haemochromatosis in French-speaking Belgium. Diabetes Metab. 1997;23(4):308–13.PubMedPubMedCentralGoogle Scholar
  170. 170.
    Merkel PA, Simonson DC, Amiel SA, Plewe G, Sherwin RS, Pearson HA, et al. Insulin resistance and hyperinsulinemia in patients with thalassemia major treated by hypertransfusion. N Engl J Med. 1988;318(13):809–14.PubMedCrossRefPubMedCentralGoogle Scholar
  171. 171.
    Hramiak IM, Finegood DT, Adams PC. Factors affecting glucose tolerance in hereditary hemochromatosis. Clin Invest Med. 1997;20(2):110.PubMedPubMedCentralGoogle Scholar
  172. 172.
    Mendler M-H, Turlin B, Moirand R, Jouanolle A-M, Sapey T, Guyader D, et al. Insulin resistance–associated hepatic iron overload. Gastroenterology. 1999;117(5):1155–63.PubMedCrossRefPubMedCentralGoogle Scholar
  173. 173.
    McClain D, Abraham D, Rogers J, Brady R, Gault P, Ajioka R, et al. High prevalence of abnormal glucose homeostasis secondary to decreased insulin secretion in individuals with hereditary haemochromatosis. Diabetologia. 2006;49(7):1661–9.PubMedCrossRefPubMedCentralGoogle Scholar
  174. 174.
    Rajpathak SN, Crandall JP, Wylie-Rosett J, Kabat GC, Rohan TE, Hu FB. The role of iron in type 2 diabetes in humans. Biochim Biophys Acta. 2009;1790(7):671–81.PubMedCrossRefPubMedCentralGoogle Scholar
  175. 175.
    Bao W, Rong Y, Rong S, Liu L. Dietary iron intake, body iron stores, and the risk of type 2 diabetes: a systematic review and meta-analysis. BMC Med. 2012;10(1):119.PubMedPubMedCentralCrossRefGoogle Scholar
  176. 176.
    Weatherall D. Pathophysiology of thalassaemia. Ballière’s Clin Haematol. 1998;11(1):127–46.CrossRefGoogle Scholar
  177. 177.
    Borgna-Pignatti C, Rugolotto S, De Stefano P, Zhao H, Cappellini MD, Del Vecchio GC, et al. Survival and complications in patients with thalassemia major treated with transfusion and deferoxamine. Haematologica. 2004;89(10):1187–93.PubMedPubMedCentralGoogle Scholar
  178. 178.
    Vogiatzi MG, Macklin EA, Trachtenberg FL, Fung EB, Cheung AM, Vichinsky E, et al. Differences in the prevalence of growth, endocrine and vitamin D abnormalities among the various thalassaemia syndromes in North America. Br J Haematol. 2009;146(5):546–56.PubMedPubMedCentralCrossRefGoogle Scholar
  179. 179.
    Hoffmeister PA, Storer BE, Sanders JE. Diabetes mellitus in long-term survivors of pediatric hematopoietic cell transplantation. J Pediatr Hematol Oncol. 2004;26(2):81–90.PubMedCrossRefPubMedCentralGoogle Scholar
  180. 180.
    Baker KS, Ness KK, Steinberger J, Carter A, Francisco L, Burns LJ, et al. Diabetes, hypertension, and cardiovascular events in survivors of hematopoietic cell transplantation: a report from the bone marrow transplantation survivor study. Blood. 2007;109(4):1765–72.PubMedCrossRefPubMedCentralGoogle Scholar
  181. 181.
    Radisky DC, Babcock MC, Kaplan J. The yeast frataxin homologue mediates mitochondrial iron efflux evidence for a mitochondrial iron cycle. J Biol Chem. 1999;274(8):4497–9.PubMedCrossRefPubMedCentralGoogle Scholar
  182. 182.
    Jehn M, Clark JM, Guallar E. Serum ferritin and risk of the metabolic syndrome in US adults. Diabetes Care. 2004;27(10):2422–8.PubMedCrossRefPubMedCentralGoogle Scholar
  183. 183.
    Iwasaki T, Nakajima A, Yoneda M, Yamada Y, Mukasa K, Fujita K, et al. Serum ferritin is associated with visceral fat area and subcutaneous fat area. Diabetes Care. 2005;28(10):2486–91.PubMedCrossRefPubMedCentralGoogle Scholar
  184. 184.
    Ford ES, Cogswell ME. Diabetes and serum ferritin concentration among US adults. Diabetes Care. 1999;22(12):1978–83.PubMedCrossRefPubMedCentralGoogle Scholar
  185. 185.
    Swaminathan S, Fonseca VA, Alam MG, Shah SV. The role of iron in diabetes and its complications. Diabetes Care. 2007;30(7):1926–33.PubMedCrossRefPubMedCentralGoogle Scholar
  186. 186.
    White DL, Collinson A. Red meat, dietary heme iron, and risk of type 2 diabetes: the involvement of advanced lipoxidation endproducts. Adv Nutr. 2013;4(4):403–11.PubMedPubMedCentralCrossRefGoogle Scholar
  187. 187.
    Bowers K, Yeung E, Williams MA, Qi L, Tobias DK, Hu FB, et al. A prospective study of prepregnancy dietary iron intake and risk for gestational diabetes mellitus. Diabetes Care. 2011;34(7):1557–63.PubMedPubMedCentralCrossRefGoogle Scholar
  188. 188.
    Shaaban MA, Dawod AEA, Nasr MA. Role of iron in diabetes mellitus and its complications. Menoufia Med J. 2016;29(1):11.CrossRefGoogle Scholar
  189. 189.
    Fernández-Real JM, López-Bermejo A, Ricart W. Cross-talk between iron metabolism and diabetes. Diabetes. 2002;51(8):2348–54.PubMedCrossRefPubMedCentralGoogle Scholar
  190. 190.
    Lekakis J, Papamichael C, Stamatelopoulos K, Cimponeriu A, Voutsas A, Vemmos K, et al. Hemochromatosis associated with endothelial dysfunction: evidence for the role of iron stores in early atherogenesis. Vasc Med. 1999;4(3):147–8.PubMedCrossRefPubMedCentralGoogle Scholar
  191. 191.
    Shah SV, Fonseca VA. Iron and diabetes revisited. Am Diabetes Assoc; 2011.Google Scholar
  192. 192.
    Facchini FS. Effect of phlebotomy on plasma glucose and insulin concentrations. Diabetes Care. 1998;21(12):2190.PubMedCrossRefPubMedCentralGoogle Scholar
  193. 193.
    Adams P, Reboussin D, Barton J, McLaren C, Eckfeldt J, McLaren G, et al.; Hemochromatosis and Iron Overload Screening (HEIRS) Study Research Investigators. Hemochromatosis and iron-overload screening in a racially diverse population. N Engl J Med. 2005;352:1769–78.Google Scholar
  194. 194.
    Ascherio A, Rimm EB, Giovannucci E, Willett WC, Stampfer MJ. Blood donations and risk of coronary heart disease in men. Circulation. 2001;103(1):52–7.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jothydev Kesavadev
    • 1
  • Fatema Jawad
    • 2
  • Asma Deeb
    • 3
  • Ankia Coetzee
    • 4
  • M. A. Jalil Ansari
    • 5
  • Dina Shrestha
    • 6
  • Noel Somasundaram
    • 7
  • Sanjay Kalra
    • 8
  1. 1.Jothydev’s Diabetes Research CenterTrivandrumIndia
  2. 2.Department of DiabetologySindh Institute of Urology and TransplantationKarachiPakistan
  3. 3.Mafraq HospitalAbu DhabiUnited Arab Emirates
  4. 4.Division of Endocrinology, Department of Medicine, Faculty of Medicine and Health SciencesStellenbosch UniversityTygerberg, Cape TownSouth Africa
  5. 5.Department of EndocrinologyDhaka Medical College & Hospital (DMCH)DhakaBangladesh
  6. 6.Department of EndocrinologyNorvic International HospitalKathmanduNepal
  7. 7.National Hospital of Sri LankaColomboSri Lanka
  8. 8.Department of EndocrinologyBharati HospitalKarnalIndia

Personalised recommendations