Advertisement

Diabetic Cardiac Autonomic Neuropathy

  • Viktoria Serhiyenko
  • Alexandr Serhiyenko
Chapter

Abstract

Cardiac autonomic neuropathy (CAN) is a serious and common complication of diabetes mellitus (DM). Despite its relationship to an increased risk of cardiovascular mortality and its association with multiple symptoms and impairments, the significance of CAN has not been fully appreciated. CAN among DM patients is characterized as review of the latest evidence and own data regarding the epidemiology, pathogenesis, clinical signs, diagnosis of CAN, and treatment and the treatment perspectives for diabetic CAN. Lifestyle modification and intensive glycemic control might prevent development or progression of CAN. Pathogenetic treatment of CAN includes: optimization of glycemic control; balanced diet and physical activity; treatment of dyslipoproteinemia; correction of metabolic abnormalities in myocardium; prevention and treatment of thrombosis; use of aldose reductase inhibitors; angiotensin-converting enzyme inhibitors, prostaglandin analogs, acetyl-L-carnitine, antioxidants, first of all α-lipoic acid, use of ω-3 polyunsaturated fatty acids, vasodilators, fat-soluble vitamin B1, aminoguanidine; substitutive therapy of growth factors, in severe cases - treatment of orthostatic hypotension.

The following chapter includes the epidemiology, pathogenesis, clinical impact, assessment, diagnosis and staging, diagnostic criteria, and approaches to prevention and treatment of CAN.

Keywords

Diabetes mellitus Cardiac autonomic neuropathy Heart rate variability Cardiovascular reflex tests Orthostatic hypotension Treatment 

Abbreviations

ABPM

Ambulatory blood pressure monitoring

BP

Blood pressure

BRS

Baroreflex sensitivity

CAD

Coronary artery disease

CAN

Cardiovascular autonomic neuropathy

CARTs

Cardiovascular autonomic reflex tests

CHD

Coronary heart disease

CVD

Cardiovascular diseases

DLP

Dyslipidemia

DM

Diabetes mellitus

HR

Heart rate

HRT

Heart rate turbulence

HRV

Heart rate variability

LV

Left ventricular

MI

Myocardial infarction

MSNA

Muscle sympathetic nerve activity

OH

Orthostatic hypotension

QTi

QT interval

SMI

Silent myocardial ischemia

T1DM

Type 1 diabetes mellitus

T2DM

Type 2 diabetes mellitus

α-LA

α-lipoic acid

ω-3 PUFA

ω-3 Polyunsaturated fatty acids

Notes

Glossary

Cardiac autonomic neuropathy

chronic complication of diabetes mellitus, is defined as the impairment of autonomic control of the cardiovascular system in the setting of diabetes after exclusion of other causes and is usually documented by using several cardiovascular autonomic reflex tests.

Cardiovascular autonomic reflex tests

these tests are considered the gold standard in autonomic testing. Heart rate variations during deep breathing, Valsalva maneuver, and lying-to-standing (HR tests) are indices mainly of parasympathetic function, whereas the orthostatic hypotension, the blood pressure response to a Valsalva maneuver, and sustained isometric muscular strain provide indices of sympathetic function.

Orthostatic hypotension

is defined as a fall in BP (i.e., >20 mmHg or more stringent criteria is >30 mmHg for systolic or >10 mmHg for diastolic BP) in response to postural change, from supine to standing.

Non-dipping status

a fall in average sleeping blood pressure < 10% from baseline.

Reverse dipping

nocturnal hypertension.

References

  1. 1.
    AdaikalakoteswaAri A, Rabbani N, Waspadji S, Tjokroprawiro A, Kariadi SH, Adam JM, Thornalley PJ. Disturbance of B-vitamin status in people with type 2 diabetes in Indonesia-link to renal status, glycemic control and vascular inflammation. Diabetes Res Clin Pract. 2012;95:415–24.  https://doi.org/10.1016/j.diabres.2011.10.042. PMid:22133652.CrossRefGoogle Scholar
  2. 2.
    AIM-HIGH Investigators. The role of niacin in raising high-density lipoprotein cholesterol to reduce cardiovascular events in patients with atherosclerotic cardiovascular disease and optimally treated low-density lipoprotein cholesterol: baseline characteristics of study participants. The Atherothrombosis Intervention in Metabolic syndrome with low HDL/high triglycerides: impact on Global Health outcomes (AIM-HIGH) trial. Am Heart J. 2011;161:538–43.  https://doi.org/10.1016/j.ahj.2010.12.007. PMid:21392609 PMCid:PMC3120223.CrossRefGoogle Scholar
  3. 3.
    Albers JW, Pop-Busui R. Diabetic neuropathy: mechanisms, emerging treatments, and subtypes. Curr Neurol Neurosci Rep. 2014;14:473.  https://doi.org/10.1007/s11910-014-0473-5. PMid:24954624.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Allman KC, Stevens MJ, Wieland DM, Hutchins GD, Wolfe ER Jr, Greene DA, Schwaiger M. Noninvasive assessment of cardiac diabetic neuropathy by C-11 hydroxyephedrine and positron emission tomography. J Am Coll Cardiol. 1993;22:1425–32.  https://doi.org/10.1016/0735-1097(93)90553-D.CrossRefPubMedGoogle Scholar
  5. 5.
    American Diabetes Association. Standards of medical care in diabetes-2014. Diabetes Care. 2014;37(Suppl 1):14–80.  https://doi.org/10.2337/dc14-S014. PMid:24357209.CrossRefGoogle Scholar
  6. 6.
    American Diabetes Association. Standards of medical care in diabetes-2016. Diabetes Care. 2016;39(Suppl 1):1–2.  https://doi.org/10.2337/dc16-S001.CrossRefGoogle Scholar
  7. 7.
    Anonymous. Assessment: clinical autonomic testing report of the therapeutics and technology assessment Subcommittee of the American Academy of Neurology. Neurology. 1996;46:873–80. PMid:8618715.Google Scholar
  8. 8.
    Ascaso JF. Advances in cholesterol-lowering interventions. Endocrinol Nutr. 2010;57:210–9.  https://doi.org/10.1016/j.endonu.2010.03.008. PMid:20451478.CrossRefPubMedGoogle Scholar
  9. 9.
    Balcıoğlu AS, Müderrisoğlu H. Diabetes and cardiac autonomic neuropathy: clinical manifestations, cardiovascular consequences, diagnosis and treatment. World J Diabetes. 2015;6(1):80–91.  https://doi.org/10.4239/wjd.v6.i1.80. PMid:25685280 PMCid:PMC4317320.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Bang HO, Dyerberg J. The bleeding tendency in Greenland Eskimos. Dan Med Bull. 1980;27:202–5. PMid:7438807.PubMedGoogle Scholar
  11. 11.
    Bauer A, Malik M, Schmidt G, Barthel P, Bonnemeier H, Cygankiewicz I, et al. Heart rate turbulence: standards of measurement, physiological interpretation, and clinical use: international society for holter and noninvasive electrophysiology consensus. J Am Coll Cardiol. 2008;52:1353–65.  https://doi.org/10.1016/j.jacc.2008.07.041. PMid:18940523.CrossRefPubMedGoogle Scholar
  12. 12.
    Belfort R, Berria R, Cornell J, Cusi K. Fenofibrate reduces systemic inflammation markers independent of its effects on lipid and glucose metabolism in patients with the metabolic syndrome. J Clin Endocrinol Metab. 2010;95:829–36.  https://doi.org/10.1210/jc.2009-1487. PMid:20061429 PMCid:PMC2840858.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Bernardi L. Clinical evaluation of arterial baroreflex activity in diabetes. Diabetes Nutr Metab. 2000;13(6):331–40. 11232758.PubMedGoogle Scholar
  14. 14.
    Bernardi L, Spallone V, Stevens M, Hilsted J, Frontoni S, Pop-Busui R, et al. Methods of investigation for cardiac autonomic dysfunction in human research studies. Diabetes Metab Res Rev. 2011;27:654–64.  https://doi.org/10.1002/dmrr.1224. PMid:21695761.CrossRefPubMedGoogle Scholar
  15. 15.
    Blum A, Shamburek R. The pleiotropic effects of statins on endothelial function, vascular inflammation, immunomodulation and thrombogenesis. Atherosclerosis. 2009;203:325–30.  https://doi.org/10.1016/j.atherosclerosis.2008.08.022. PMid:18834985.CrossRefPubMedGoogle Scholar
  16. 16.
    Bosch J, Gerstein HC, Dagenais GR, Díaz R, Dyal L, Jung H, et al. n-3 fatty acids and cardiovascular outcomes in patients with dysglycemia. N Engl J Med. 2012;367:309–18.  https://doi.org/10.1056/NEJMoa1203859. PMid:22686415.CrossRefPubMedGoogle Scholar
  17. 17.
    Boulton AJ, Vinik AI, Arezzo JC, Bril V, Feldman EL, Freeman R, et al. Diabetic neuropathies: a statement by the American Diabetes Association. Diabetes Care. 2005;28:956–62.  https://doi.org/10.2337/diacare.28.4.956. PMid:15793206.CrossRefPubMedGoogle Scholar
  18. 18.
    Burgos LG, Ebert TJ, Assiddao C, Turner LA, Pattison CZ, Wang-Cheng R, Kampline JP. Increased intraoperative cardiovascular morbidity in diabetics with autonomic neuropathy. Anesthesiology. 1989;70:591–7.  https://doi.org/10.1097/00000542-198904000-00006. PMid:2929996.CrossRefPubMedGoogle Scholar
  19. 19.
    Callaghan BC, Cheng HT, Stables CL, Smith AL, Feldman EL. Diabetic neuropathy: clinical manifestations and current treatments. Lancet Neurol. 2012;11:521–34.  https://doi.org/10.1016/S1474-4422(12)70065-0.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Csányi G, Miller FJ. Oxidative stress in cardiovascular disease. Int J Mol Sci. 2014;15:6002–8.  https://doi.org/10.3390/ijms15046002. PMid:24722571 PMCid:PMC4013610.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    DeGrado TR, Hutchins GD, Toorongian SA, Wieland DM, Schwaiger M. Myocardial kinetics of carbon-11-meta-hydroxyephedrine (HED): retention mechanisms and effects of norepinephrine. J Nucl Med. 1993;34:1287–93. PMid:8326386.PubMedGoogle Scholar
  22. 22.
    De Roos B, Mavrommatis Y, Brouwer IA. Long-chain n-3 polyunsaturated fatty acids: new insights into mechanisms relating to inflammation and coronary heart disease. Br J Pharmacol. 2009;158:413–28.  https://doi.org/10.1111/j.1476-5381.2009.00189.x. PMid:19422375 PMCid:PMC2757681.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Derosa G, Limas CP, Macías PC, Estrella A, Maffioli P. Dietary and nutraceutical approach to type 2 diabetes. Arch Med Sci. 2014;10:336–44.  https://doi.org/10.5114/aoms.2014.42587. PMid:24904670 PMCid:PMC4042055.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Desouza CV, Bolli GB, Fonseca V. Hypoglycemia, diabetes, and cardiovascular events. Diabetes Care. 2010;33:1389–94.  https://doi.org/10.2337/dc09-2082. PMid:20508232 PMCid:PMC2875462.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Dhule SS, Gawali SR. Platelet aggregation and clotting time in type II diabetic males. Natl J Physiol Pharm Pharmacol. 2014;4:121–3.  https://doi.org/10.5455/njppp.2014.4.290920131.CrossRefGoogle Scholar
  26. 26.
    Dimitropoulos G, Tahrani AA, Stevens MJ. Cardiac autonomic neuropathy in patients with diabetes mellitus. World J Diabetes. 2014;6(2):245–58.  https://doi.org/10.4239/wjd.v5.i1.17.CrossRefGoogle Scholar
  27. 27.
    Ebbesson SO, Devereux RB, Cole S, Ebbesson LO, Fabsitz RR, Haack K, et al. Heart rate is associated with red blood cell fatty acid concentration: the Genetics of Coronary Artery Disease in Alaska Natives (GOCADAN) study. Am Heart J. 2010;159:1020–5.  https://doi.org/10.1016/j.ahj.2010.03.001. PMid:20569715 PMCid:PMC2897142.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Ewing DJ, Martyn CN, Young RJ, Clarke BF. The value of cardiovascular autonomic function tests: 10 years experience in diabetes. Diabetes Care. 1985;8:491–8.  https://doi.org/10.2337/diacare.8.5.491. PMid:4053936.CrossRefPubMedGoogle Scholar
  29. 29.
    Fleg JL, Mete M, Howard BV, Umans JG, Roman MJ, Ratner RE, et al. Effect of statins alone versus statins plus ezetimibe on carotid atherosclerosis in type 2 diabetes: the SANDS (Stop Atherosclerosis in Native Diabetics Study) trial. J Am Coll Cardiol. 2008;52:2198–205.  https://doi.org/10.1016/j.jacc.2008.10.031. PMid:19095139 PMCid:PMC2854549.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Fragasso G, Palloshi A, Puccetti P, Silipigni C, Rossodivita A, Pala M, et al. A randomized clinical trial of trimetazidine, a partial free fatty acid oxidation inhibitor, in patients with heart failure. J Am Coll Cardiol. 2006;48:992–8.  https://doi.org/10.1016/j.jacc.2006.03.060. PMid:16949492.CrossRefPubMedGoogle Scholar
  31. 31.
    Freeman MR, Newman D, Dorian P, Barr A, Langer A. Relation of direct assessment of cardiac autonomic function with metaiodobenzylguanidine imaging to heart rate variability in diabetes mellitus. Am J Cardiol. 1987;80(2):247–50.  https://doi.org/10.1016/S0002-9149(97)00337-8.CrossRefGoogle Scholar
  32. 32.
    Freeman R. Clinical practice. Neurogenic orthostatic hypotension. N Engl J Med. 2008;358:615–24.  https://doi.org/10.1056/NEJMcp074189. PMid:18256396.CrossRefPubMedGoogle Scholar
  33. 33.
    Gaede P, Lund-Andersen H, Parving HH, Pedersen O. Effect of a multifactorial intervention on mortality in type 2 diabetes. N Engl J Med. 2008;358:580–91.  https://doi.org/10.1056/NEJMoa0706245. PMid:18256393.CrossRefPubMedGoogle Scholar
  34. 34.
    González-Ortiz M, Martínez-Abundis E, Robles-Cervantes JA, Ramírez-Ramírez V, Ramos-Zavala MG. Effect of thiamine administration on metabolic profile, cytokines and inflammatory markers in drug-naïve patients with type 2 diabetes. Eur J Nutr. 2011;50:145–9.  https://doi.org/10.1007/s00394-010-0123-x. PMid:20652275.CrossRefPubMedGoogle Scholar
  35. 35.
    Hage FG, Iskandrian AE. Cardiovascular imaging in diabetes mellitus. J Nucl Cardiol. 2011;18:959–65.  https://doi.org/10.1007/s12350-011-9431-7. PMid:21785921.CrossRefPubMedGoogle Scholar
  36. 36.
    Harris WS. Omega-3 fatty acids and cardiovascular disease: a case for omega-3 index as a new risk factor. Pharmacol Res. 2007;55:217–23.  https://doi.org/10.1016/j.phrs.2007.01.013. PMid:17324586 PMCid:PMC1899522.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Haupt E, Ledermann H, Köpcke W. Benfotiamine in the treatment of diabetic polyneuropathy-a three-week randomized, controlled pilot study (BEDIP study). Int J Clin Pharmacol Ther. 2005;43:71–7.  https://doi.org/10.5414/CPP43071. PMid:15726875.CrossRefPubMedGoogle Scholar
  38. 38.
    Hilsted J. Catecholamines and diabetic autonomic neuropathy. Diabet Med. 1995;12(4):296–7.  https://doi.org/10.1111/j.1464-5491.1995.tb00479.x. PMid:7600741.CrossRefPubMedGoogle Scholar
  39. 39.
    Hoffman RP, Sinkey CA, Anderson EA. Microneurographically determined muscle sympathetic nerve activity levels are reproducible in insulin-dependent diabetes mellitus. J Diabetes Complicat. 1998;12(6):307–10.  https://doi.org/10.1016/S1056-8727(98)00010-5.CrossRefPubMedGoogle Scholar
  40. 40.
    Ibrahimpasic K. Alpha lipoic acid and glycaemic control in diabetic neuropathies at type 2 diabetes treatment. Med Arch. 2013;67:7–9.  https://doi.org/10.5455/medarh.2013.67.7-9. PMid:23678828.CrossRefPubMedGoogle Scholar
  41. 41.
    International Diabetes Federation. IDF Diabetes Atlas. 7th ed. Brussels: International Diabetes Federation; 2015.Google Scholar
  42. 42.
    Jeppesen C, Schiller K, Schulze MB. Omega-3 and omega-6 fatty acids and type 2 diabetes. Curr Diab Rep. 2013;13:279–88.  https://doi.org/10.1007/s11892-012-0362-8. PMid:23325534.CrossRefPubMedGoogle Scholar
  43. 43.
    Kandasamy N, Joseph F, Goenka N. The role of omega-3 fatty acids in cardiovascular disease, hypertriglyceridaemia and diabetes mellitus. Br J Diabet Vasc Dis. 2008;8:121–8.  https://doi.org/10.1177/14746514080080030301.CrossRefGoogle Scholar
  44. 44.
    Kempler P, editor. Neuropathies. Nerve dysfunction of diabetic and other origin. Budapest: Springer; 1997.Google Scholar
  45. 45.
    Ko SH, Park SA, Cho JH, Song KH, Yoon KH, Cha BY, et al. Progression of cardiovascular autonomic dysfunction in patients with type 2 diabetes: a 7-year follow-up study. Diabetes Care. 2008;31:1832–6.  https://doi.org/10.2337/dc08-0682. PMid:18509202 PMCid:PMC2518354.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    La Rovere MT, Pinna GD, Maestri R, Robbi E, Caporotondi A, Guazzotti G, et al. Prognostic implications of baroreflex sensitivity in heart failure patients in the beta-blocking era. J Am Coll Cardiol. 2009;53(2):193–9.  https://doi.org/10.1016/j.jacc.2008.09.034. PMid:19130988.CrossRefPubMedGoogle Scholar
  47. 47.
    Lahrmann H, Cortelli P, Hilz M, Mathias CJ, Struhal W, Tassinari M. EFNS guidelines on the diagnosis and management of orthostatic hypotension. Eur J Neurol. 2006;13:930–6.  https://doi.org/10.1111/j.1468-1331.2006.01512.x. PMid:16930356.CrossRefPubMedGoogle Scholar
  48. 48.
    Lee L, Campbell R, Scheuermann-Freestone M, Taylor R, Gunaruwan P, Williams L, et al. Metabolic modulation with perhexiline in chronic heart failure: a randomized, controlled trial of short-term use of a novel treatment. Circulation. 2005;112:3280–8.  https://doi.org/10.1161/CIRCULATIONAHA.105.551457. PMid:16301359.CrossRefPubMedGoogle Scholar
  49. 49.
    Low PA. Prevalence of orthostatic hypotension. Clin Auton Res. 2008;18(Suppl 1):8–13.  https://doi.org/10.1007/s10286-007-1001-3. PMid:18368301.CrossRefPubMedGoogle Scholar
  50. 50.
    Low PA, Walsh JC, Huang CY, McLeod JC. The sympathetic nervous system in diabetic neuropathy. A clinical and pathological study. Brain. 1975;98:341–56.  https://doi.org/10.1093/brain/98.3.341.CrossRefPubMedGoogle Scholar
  51. 51.
    Mancia G, De Backer G, Dominiczak A, Cifkova R, Fagard R, Germano G, et al. ESH-ESC Guidelines for the management of arterial hypertension: the task force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). J Hypertens. 2007;25(6):1105–87.  https://doi.org/10.1097/HJH.0b013e3281fc975a. PMid:17563527.CrossRefPubMedGoogle Scholar
  52. 52.
    Maser RE, Lenhard MJ. Cardiovascular autonomic neuropathy due to diabetes mellitus: clinical manifestations, consequences, and treatment. J Clin Endocrinol Metab. 2005;90:5896–903.  https://doi.org/10.1210/jc.2005-0754. PMid:16014401.CrossRefPubMedGoogle Scholar
  53. 53.
    Mogensen UM, Jensen T, Kober L, Kelbaek H, Mathiesen AS, Dixen P, et al. Cardiovascular autonomic neuropathy and subclinical cardiovascular disease in normoalbuminuric Type 1 diabetic patients. Diabetes. 2012;61:1822–30.  https://doi.org/10.2337/db11-1235. PMid:22498696 PMCid:PMC3379682.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Morrow DA, Scirica BM, Karwatowska-Prokopczuk E, Murphy SA, Budaj A, Varshavsky S, et al. Effects of ranolazine on recurrent cardiovascular events in patients with non-ST-elevation acute coronary syndromes: the MERLIN-TIMI 36 randomized trial. JAMA. 2007;297:1775–83.  https://doi.org/10.1001/jama.297.16.1775. PMid:17456819.CrossRefPubMedGoogle Scholar
  55. 55.
    Moss CJ, Mathews ST. Thiamin status and supplementation in the management of diabetes mellitus and its vascular comorbidities. Vitam Miner. 2013;2:111.  https://doi.org/10.4172/vms.1000111.CrossRefGoogle Scholar
  56. 56.
    Nagamachi S, Jinnouchi S, Kurose T, Ohnishi T, Flores LG 2nd, Nakahara H, Futami S, Tamura S, Matsukura S. 123I-MIBG myocardial scintigraphy in diabetic patients: relationship with 201Tl uptake and cardiac autonomic function. Ann Nucl Med. 1998;12(6):323–31.  https://doi.org/10.1007/BF03164921. PMid:9972369.CrossRefPubMedGoogle Scholar
  57. 57.
    Orchard TJ, LLoyd CE, Maser RE, Kuller LH. Why does diabetic autonomic neuropathy predict IDDM mortality? An analysis from the Pittsburgh Epidemiology of Diabetes Complications Study. Diabetes Res Clin Pract. 1996;34(Suppl):S165–71.  https://doi.org/10.1016/S0168-8227(96)90025-X.CrossRefPubMedGoogle Scholar
  58. 58.
    Ozdemir M, Arslan U, Türkoğlu S, Balcioğlu S, Cengel A. Losartan improves heart rate variability and heart rate turbulence in heart failure due to ischemic cardiomyopathy. J Card Fail. 2007;13:812–7.  https://doi.org/10.1016/j.cardfail.2007.08.002. PMid:18068613.CrossRefPubMedGoogle Scholar
  59. 59.
    Pop-Busui R. Cardiac autonomic neuropathy in diabetes. A clinical perspective. Diabetes Care. 2010;33:434–41.  https://doi.org/10.2337/dc09-1294. PMid:20103559 PMCid:PMC2809298.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Pop-Busui R, Evans GW, Gerstein HC, Fonseca V, Fleg JL, Hoogwerf BJ, et al. Effects of cardiac autonomic dysfunction on mortality risk in the action to control cardiovascular risk in diabetes (ACCORD) trial. Diabetes Care. 2010;33:1578–84.  https://doi.org/10.2337/dc10-0125. PMid:20215456 PMCid:PMC2890362.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Power RA, Hulver MW, Zhang JY, Dubois J, Marchand RM, Ilkayeva O, et al. Carnitine revisited: potential use as adjunctive treatment in diabetes. Diabetologia. 2007;50:824–32.  https://doi.org/10.1007/s00125-007-0605-4. PMid:17310372.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Prince CT, Secrest AM, Mackey RH, Arena VC, Kingsley LA, Orchard TJ. Cardiovascular autonomic neuropathy, HDL cholesterol, and smoking correlate with arterial stiffness markers determined 18 years later in type 1 diabetes. Diabetes Care. 2010;33:652–7.  https://doi.org/10.2337/dc09-1936. PMid:20040653 PMCid:PMC2827525.CrossRefPubMedGoogle Scholar
  63. 63.
    Rhee SY, Kim YS, Chon S, Oh S, Woo JT, Kim SW, Kim JW. Long-term effects of cilostazol on the prevention of macrovascular disease in patients with type 2 diabetes mellitus. Diabetes Res Clin Pract. 2011;91:11–4.  https://doi.org/10.1016/j.diabres.2010.09.009. PMid:20934769.CrossRefGoogle Scholar
  64. 64.
    Rolim LC, de Souza JST, Dib SA. Tests for early diagnosis of cardiovascular autonomic neuropathy: critical analysis and relevance. Front Endocrinol (Lausanne). 2014;4:173.  https://doi.org/10.3389/fendo.2013.00173.CrossRefGoogle Scholar
  65. 65.
    Rosengård-Bärlund M, Bernardi L, Fagerudd J, Mäntysaari M, Af Björkesten CG, Lindholm H, FinnDiane Study Group, et al. Early autonomic dysfunction in type 1 diabetes: a reversible disorder? Diabetologia. 2009;52(6):1164–72.  https://doi.org/10.1007/s00125-009-1340-9. PMid:19340407.CrossRefPubMedGoogle Scholar
  66. 66.
    Santini V, Ciampittiello G, Gigli F, Bracaglia D, Baroni A, Cocconetti E, et al. QTc and autonomic neuropathy in diabetes: effects of acute hyperglycaemia and n-3 PUFA. Nutr Metab Cardiovasc Dis. 2007;17:712–8.  https://doi.org/10.1016/j.numecd.2006.09.006. PMid:17324562.CrossRefPubMedGoogle Scholar
  67. 67.
    Schemmel KE, Padiyara RS, D’Souza JJ. Aldose reductase inhibitors in the treatment of diabetic peripheral neuropathy: a review. J Diabetes Complicat. 2010;24:354–60.  https://doi.org/10.1016/j.jdiacomp.2009.07.005. PMid:19748287.CrossRefPubMedGoogle Scholar
  68. 68.
    Schnell O, Muhr D, Weiss M, Dresel S, Haslbeck M, Standl E. Reduced myocardial 123I-metaiodobenzylguanidine uptake in newly diagnosed IDDM patients. Diabetes. 1996;45:801–5.  https://doi.org/10.2337/diab.45.6.801. PMid:8635656.CrossRefPubMedGoogle Scholar
  69. 69.
    Serhiyenko VA, Serhiyenko AA. Diabetic cardiac autonomic neuropathy: do we have any treatment perspectives? World J Diabetes. 2015;6(2):245–58.  https://doi.org/10.4239/wjd.v6.i2.245. PMid:25789106 PMCid:PMC4360418.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Shakespeare CF, Katritsis D, Crowther A, Cooper IC, Coltart JD, Webb-Peploe MV. Differences in autonomic nerve function in patients with silent and symptomatic myocardial ischaemia. Br Heart J. 1994;71:22–9.  https://doi.org/10.1136/hrt.71.1.22. PMid:8297687 PMCid:PMC483603.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Shin S, Kim KJ, Chang HJ, Lee BW, Yang WI, Cha BS, Choi D. The effect of oral prostaglandin analogue on painful diabetic neuropathy: a double-blind, randomized, controlled trial. Diabetes Obes Metab. 2013;15:185–8.  https://doi.org/10.1111/dom.12010. PMid:22974254.CrossRefPubMedGoogle Scholar
  72. 72.
    Soares-Miranda L, Sandercock G, Vale S, Santos R, Abreu S, Moreira C, Mota J. Metabolic syndrome, physical activity and cardiac autonomic function. Diabetes Metab Res Rev. 2012;28:363–9.  https://doi.org/10.1002/dmrr.2281.CrossRefPubMedGoogle Scholar
  73. 73.
    Solfrizzi V, Capurso C, Colacicco AM, D’Introno A, Fontana C, Capurso SA, et al. Efficacy and tolerability of combined treatment with L-carnitine and simvastatin in lowering lipoprotein(a) serum levels in patients with type 2 diabetes mellitus. Atherosclerosis. 2006;188:455–61.  https://doi.org/10.1016/j.atherosclerosis.2005.11.024. PMid:16384561.CrossRefPubMedGoogle Scholar
  74. 74.
    Spallone V, Bellarvere F, Scionti L, Maule S, Quadri R, Bax G, et al. Recommendations for the use of cardiovascular tests in diagnosing diabetic autonomic neuropathy. Nutr Metab Cardiovasc Dis. 2011;21:69–78.  https://doi.org/10.1016/j.numecd.2010.07.005. PMid:21247746.CrossRefPubMedGoogle Scholar
  75. 75.
    Spallone V, Ziegler D, Freeman R, Bernardi L, Frontoni S, Pop-Busui R, et al. Cardiovascular autonomic neuropathy in diabetes: clinical impact, assessment, diagnosis, and management. Diabetes Metab Res Rev. 2011;27:639–53.  https://doi.org/10.1002/dmrr.1239. PMid:21695768.CrossRefPubMedGoogle Scholar
  76. 76.
    Staels B. A review of bile acid sequestrants: potential mechanism(s) for glucose-lowering effects in type 2 diabetes mellitus. Postgrad Med. 2009;121(Suppl 1):25–30.  https://doi.org/10.3810/pgm.2009.05.suppl53.290. PMid:19494475.CrossRefPubMedGoogle Scholar
  77. 77.
    Stevens MJ, Dayanikli F, Raffel DM, Allman KC, Sandford T, Feldman EL, et al. Scintigraphic assessment of regionalized defects in myocardial sympathetic innervation and blood flow regulation in diabetic patients with autonomic neuropathy. J Am Coll Cardiol. 1998;31:1575–84.  https://doi.org/10.1016/S0735-1097(98)00128-4.CrossRefPubMedGoogle Scholar
  78. 78.
    Stracke H, Gaus W, Achenbach U, Federlin K, Bretzel RG. Benfotiamine in diabetic polyneuropathy (BENDIP): results of a randomised, double blind, placebo-controlled clinical study. Exp Clin Endocrinol Diabetes. 2008;116:600–5.  https://doi.org/10.1055/s-2008-1065351. PMid:18473286.CrossRefPubMedGoogle Scholar
  79. 79.
    Sytze Van Dam P, Cotter MA, Bravenboer B, Cameron NE. Pathogenesis of diabetic neuropathy: focus on neurovascular mechanisms. Eur J Pharmacol. 2013;719:180–6.  https://doi.org/10.1016/j.ejphar.2013.07.017. PMid:23872412.CrossRefPubMedGoogle Scholar
  80. 80.
    Tandon N, Ali MK, Narayan KM. Pharmacologic prevention of microvascular and macrovascular complications in diabetes mellitus: implications of the results of recent clinical trials in type 2 diabetes. Am J Cardiovasc Drugs. 2012;12:7–22.  https://doi.org/10.2165/11594650-000000000-00000. PMid:22217193.CrossRefPubMedGoogle Scholar
  81. 81.
    Tesfaye S, Boulton AJM, Dyck PJ, Freeman R, Horowitz M, Kempler P, et al. Diabetic neuropathies: update on definitions, diagnostic criteria, estimation of severity, and treatments. Diabetes Care. 2010;33:2285–93.  https://doi.org/10.2337/dc10-1303. PMid:20876709 PMCid:PMC2945176.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Tesfaye S, Selvarajah D. Advances in the epidemiology, pathogenesis and management of diabetic peripheral neuropathy. Diabetes Metab Res Rev. 2012;28(Suppl 1):8–14.  https://doi.org/10.1002/dmrr.2239. PMid:22271716.CrossRefPubMedGoogle Scholar
  83. 83.
    Tomassini JE, Mazzone T, Goldberg RB, Guyton JR, Weinstock RS, Polis A, et al. Effect of ezetimibe/simvastatin compared with atorvastatin on lipoprotein subclasses in patients with type 2 diabetes and hypercholesterolaemia. Diabetes Obes Metab. 2009;11:855–64.  https://doi.org/10.1111/j.1463-1326.2009.01061.x. PMid:19508464.CrossRefPubMedGoogle Scholar
  84. 84.
    Valensi P, Johnson NB, Maison-Blanche P, Extramania F, Motte G, Coumel P. Influence of cardiac autonomic neuropathy on heart rate dependence of ventricular repolarization in diabetic patients. Diabetes Care. 2002;25:918–23.  https://doi.org/10.2337/diacare.25.5.918. PMid:11978691.CrossRefPubMedGoogle Scholar
  85. 85.
    Valensi P, Pariès J, Attali JR, French Group for Research and Study of Diabetic Neuropathy. Cardiac autonomic neuropathy in diabetic patients: influence of diabetes duration, obesity, and microangiopathic complications-the French multicenter study. Metabolism. 2003;52:815–20.  https://doi.org/10.1016/S0026-0495(03)00095-7.CrossRefPubMedGoogle Scholar
  86. 86.
    Valensi P, Extramiana F, Lange C, Cailleau M, Haggui A, Maison Blanche P, et al. Influence of blood glucose on heart rate and cardiac autonomic function. The DESIR study. Diabet Med. 2011;28:440–9.  https://doi.org/10.1111/j.1464-5491.2010.03222.x. PMid:21204961.CrossRefPubMedGoogle Scholar
  87. 87.
    Veglio M, Chinaglia A, Cavallo-Perin P. QT interval, cardiovascular risk factors and risk of death in diabetes. J Endocrinol Investig. 2004;27:175–81.  https://doi.org/10.1007/BF03346265. PMid:15129815.CrossRefGoogle Scholar
  88. 88.
    Vincent AM, Calabek B, Roberts L, Feldman EL. Biology of diabetic neuropathy. Handb Clin Neurol. 2013;115:591–606.  https://doi.org/10.1016/B978-0-444-52902-2.00034-5. PMid:23931804.CrossRefPubMedGoogle Scholar
  89. 89.
    Vinik AI, Erbas T. Diabetic autonomic neuropathy. In: Buijs RM, Swaab DF, editors. Handbook of clinical neurology, vol. 117. Edinburgh/London/New York/etc: Elsevier; 2013. p. 279–94.  https://doi.org/10.1016/B978-0-444-53491-0.00022-5.CrossRefGoogle Scholar
  90. 90.
    Vinik AI, Ziegler D. Diabetic cardiovascular autonomic neuropathy. Circulation. 2007;115:387–97.  https://doi.org/10.1161/CIRCULATIONAHA.106.634949. PMid:17242296.CrossRefPubMedGoogle Scholar
  91. 91.
    Vinik AI, Maser RE, Ziegler D. Neuropathy: the crystal ball for cardiovascular disease? Diabetes Care. 2010;33:1688–90.  https://doi.org/10.2337/dc10-0745. PMid:20587730 PMCid:PMC2890382.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Vinik AI, Maser RE, Ziegler D. Autonomic imbalance: prophet of doom or scope for hope. Diabet Med. 2011;28:643–51.  https://doi.org/10.1111/j.1464-5491.2010.03184.x. PMid:21569084 PMCid:PMC3123705.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Vinik AI, Erbas T, Casellini CM. Diabetic cardiac autonomic neuropathy, inflammation and cardiovascular disease. J Diabetes Investig. 2013;4(1):4–18.  https://doi.org/10.1111/jdi.12042. PMid:23550085 PMCid:PMC3580884.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Wackers FJ, Young LH, Inzucchi SE, Chyun DA, Davey JA, Barrett EJ, et al. Detection of silent myocardial ischemia in asymptomatic diabetic dubjects: the DIAD study. Diabetes Care. 2004;27:1954–61.  https://doi.org/10.2337/diacare.27.8.1954. PMid:15277423.CrossRefPubMedGoogle Scholar
  95. 95.
    Wanders D, Plaisance EP, Judd RL. Pharmacological effects of lipid-lowering drugs on circulating adipokines. World J Diabetes. 2010;1(4):116–28.  https://doi.org/10.4239/wjd.v1.i4.116. PMid:21537437 PMCid:PMC3083894.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Witteles RM, Fowler MB. Insulin-resistant cardiomyopathy clinical evidence, mechanisms, and treatment options. J Am Coll Cardiol. 2008;51:93–102.  https://doi.org/10.1016/j.jacc.2007.10.021. PMid:18191731.CrossRefPubMedGoogle Scholar
  97. 97.
    Ziegler D. Can diabetic polyneuropathy be successfully treated? MMW Fortschr Med. 2010;152:64–8.  https://doi.org/10.1007/BF03366224. PMid:20384102.CrossRefPubMedGoogle Scholar
  98. 98.
    Ziegler D, Gries FA, Mühlen H, Rathmann W, Spuler M, Lessmann F. Prevalence and clinical correlates of cardiovascular autonomic and peripheral diabetic neuropathy in patients attending diabetes centers. Diabete Metab. 1993;19:143–51. PMid:8314418.PubMedGoogle Scholar
  99. 99.
    Ziegler D, Schatz H, Conrad F, Gries FA, Ulrich H, Reichel G. Effects of treatment with the antioxidant alpha-lipoic acid on cardiac autonomic neuropathy in NIDDM patients. A 4-month randomized controlled multicenter trial (DEKAN Study). Diabetes Care. 1997;20:369–73.  https://doi.org/10.2337/diacare.20.3.369. PMid:9051389.CrossRefPubMedGoogle Scholar
  100. 100.
    Ziegler D, Zentai CP, Perz S, Rathmann W, Haastert B, Döring A, Meisinger C. Prediction of mortality using measures of cardiac autonomic dysfunction in the diabetic and nondiabetic population: the MONICA/KORA Augsburg Cohort Study. Diabetes Care. 2008;31:556–61.  https://doi.org/10.2337/dc07-1615. PMid:18086873.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Viktoria Serhiyenko
    • 1
  • Alexandr Serhiyenko
    • 1
  1. 1.Ostrozskogo str. Department of EndocrinologyLviv National Medical University named after Danylo GalytskiyLvivUkraine

Personalised recommendations