Skip to main content

Diabetes and Cardiovascular Disease

  • Chapter
  • First Online:
The Diabetes Textbook

Abstract

There are those who consider diabetes mellitus a cardiovascular disease since the most common and definitive final outcome or with major sequelae is presented and depends on this system. In Mexico, the incidence of diabetic patients in the total number of patients treated by coronary intervention is higher than the world average, accounting for more than 40% of patients treated. Despite progress of contemporary pharmacological therapy in improving the management of diabetes and the more generalized use of statins and aspirin, rates of progression and regression of atherosclerotic plaque remain a prevalent issue among diabetic patients, as described by Raisuke [1] (see Fig. 46.1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Iijima R, Ndrepepa G, Kujath V, Harada Y, Kufner S, Schunkert H, Nakamura M, Kastrati A. A pan-coronary artery angiographic study of the association between diabetes mellitus and progression or regression of coronary atherosclerosis. Heart Vessels. 2017;32:376–84.

    Article  PubMed  Google Scholar 

  2. Colwell JA, Lopes-Virella M, Halushka PV. Pathogenesis of atherosclerosis in diabetes mellitus. Diabetes Care. 1981;4(1):121–33.

    Article  CAS  PubMed  Google Scholar 

  3. Kearney K, Tomlinson D, Smith K, Ajjan R. Hypofibrinolysis in diabetes: a therapeutic target for the reduction of cardiovascular risk. Cardiovasc Diabetol. 2017;16:34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Birkeland KI, Jørgensen ME, Carstensen B, Persson F, Gulseth HL, Thuresson M, Fenici P, Nathanson D, Nyström T, Eriksson JW, Bodegård J, Norhammar A. Cardiovascular mortality and morbidity in patients with type 2 diabetes following initiation of sodium-glucose co-transporter-2 inhibitors versus other glucose-lowering drugs (CVD-REAL Nordic): a multinational observational analysis. Lancet Diabetes Endocrinol. 2017;5(9):709–17. www.thelancet.com/diabetes-endocrinology.

    Article  CAS  PubMed  Google Scholar 

  5. Sakata K, Waseda K, Kume T, Otake H, Nakatani D, Yock PG, Fitzgerald PJ, Honda Y. Impact of diabetes mellitus on vessel response in the drug-eluting stent era pooled volumetric intravascular ultrasound analyses. Circ Cardiovasc Interv. 2012;5:763–71.

    Article  CAS  PubMed  Google Scholar 

  6. Serruys PW, Ormiston JA, Onuma Y, Regar E, Gonzalo N, Garcia-Garcia HM, Nieman K, Bruining N, Dorange C, Miquel-Hébert K, Veldhof S, Webster M, Thuesen L, Dudek D. A bioabsorbable everolimus-eluting coronary stent system (ABSORB): 2-year outcomes and results from multiple imaging methods. Lancet. 2009;373:897–910.

    Article  CAS  PubMed  Google Scholar 

  7. Gu K, Cowie CC, Harris MI. Mortality in adults with and without diabetes in a national cohort of the U.S. population, 1971–1993. Diabetes Care. 1998;21(7):1138–45.

    Article  CAS  PubMed  Google Scholar 

  8. Garcia M, McNamara P, Gordon T, Kannel W. Morbidity and mortality in diabetics in the Framingham population. Sixteen year follow – up. Diabetes. 1974;23:105–11.

    Article  CAS  PubMed  Google Scholar 

  9. Stamler J, Vaccaro O, Neaton J, Wentworth D. Diabetes, other risk factors, and 12 yr cardiovascular mortality for men screened in the multiple risk factor intervention trial. Diabetes Care. 1993;16:434–44.

    Article  CAS  PubMed  Google Scholar 

  10. Sawicki P, Berger M. Prognosis and treatment of cardiovascular disease in diabetes mellitus. J Clin Basic Cardiol. 1999;2:22–33.

    Google Scholar 

  11. Schnohr P, Lange P, Scharling H, Skov Jensen J. Long-term physical activity in leisure time and mortality from coronary heart disease, stroke, respiratory diseases, and cancer. The Copenhagen City Heart Study. Eur J Cardiovasc Prev Rehabil. 2006;13(2):173–9.

    Article  PubMed  Google Scholar 

  12. Hammoud T, Tanguay JF, Bourassa MG. Management of coronary artery disease: therapeutic options in patients with diabetes. J Am Coll Cardiol. 2000;36:355–65. PMID: 10933343. https://doi.org/10.1016/S0735-1097(00)00732-4.

    Article  CAS  PubMed  Google Scholar 

  13. Lteif AA, Mather KJ, Clark CM. Diabetes and heart disease an evidence-driven guide to risk factors management in diabetes. Cardiol Rev. 2003;11:262–74.

    Article  PubMed  Google Scholar 

  14. Aronson D, Rayfield EJ, Chesebro JH. Mechanisms European Association for the Study of Diabetes determining course and outcome of diabetic patients who have had acute myocardial infarction. Ann Intern Med. 1997;126:296–306.

    Article  CAS  PubMed  Google Scholar 

  15. Donahoe SM, Stewart GC, McCabe CH, et al. Diabetes and mortality following acute coronary syndromes. JAMA. 2007;298:765–75.

    Article  CAS  PubMed  Google Scholar 

  16. Bartnik M, Ryden L, Ferrari R, et al. The prevalence of abnormal glucose regulation in patients with coronary artery disease across Europe. The Euro Heart Survey on diabetes and the heart. Eur Heart J. 2004;25:1880–90.

    Article  CAS  PubMed  Google Scholar 

  17. Gholap N, Davies MJ, Mostafa SA, Squire I, Khunti K. A simple strategy for screening for glucose intolerance, using glycated haemoglobin, in individuals admitted with acute coronary syndrome. Diabet Med. 2012;29:838–43.

    Article  CAS  PubMed  Google Scholar 

  18. Gyberg V, De Bacquer D, Kotseva K, et al. Screening for dysglycaemia in patients with coronary artery disease as reflected by fasting glucose, oral glucose tolerance test, and HbA1c: a report from EUROASPIRE IV – a survey from the European Society of Cardiology. Eur Heart J. 2015;36:1171–7.

    Article  CAS  PubMed  Google Scholar 

  19. Natali A, Vichi S, Landi P, Severi S, L’Abbate A, Ferrannini E. Coronary atherosclerosis in Type II diabetes: angiographic findings and clinical outcome. Diabetologia. 2000;43:632–41.

    Article  CAS  PubMed  Google Scholar 

  20. Cariou B, Bonnevie L, Mayaudon H, Dupuy O, Ceccaldi B, Bauduceau B. Angiographic characteristics of coronary artery disease in diabetic patients compared with matched non-diabetic subjects. Diabetes Nutr Metab. 2000;13:134–41.

    CAS  PubMed  Google Scholar 

  21. Werner GS, Richartz BM, Heinke S, Ferrari M, Figulla HR. Impaired acute collateral recruitment as a possible mechanism for increased cardiac adverse events in patients with diabetes mellitus. Eur Heart J. 2003;24:1134–42.

    Article  PubMed  Google Scholar 

  22. Berry C, Tardif JC, Bourassa MG. Coronary heart disease in patients with diabetes: part II: recent advances in coronary revascularization. J Am Coll Cardiol. 2007;49:643–56.

    Article  CAS  PubMed  Google Scholar 

  23. Pasterkamp G. Methods of accelerated atherosclerosis in diabetic patients. Heart. 2013;99(10):743–9.

    Article  CAS  PubMed  Google Scholar 

  24. Suzuki LA, Poot M, Gerrity RG, Bornfeldt KE. Diabetes accelerates smooth muscle accumulation in lesions of atherosclerosis: lack of direct growth-promoting effects of high glucose levels. Diabetes. 2001;50(4):851–60.

    Article  CAS  PubMed  Google Scholar 

  25. Williams SB, Cusco JA, Roddy MA, Johnstone MT, Creager MA. Impaired nitric oxide-mediated vasodilation patients with non-insulin-dependent diabetes mellitus. J Am Coll Cardiol. 1996;27(3):567–74.

    Article  CAS  PubMed  Google Scholar 

  26. Vinik AI, Erbas T, Park TS, Nolan R, Pittenger GL. Platelet dysfunction in type 2 diabetes. Diabetes Care. 2001;24(8):1476–85.

    Article  CAS  PubMed  Google Scholar 

  27. Sowers JR. Recommendations for special populations: diabetes mellitus and the metabolic syndrome. Am J Hypertens. 2003;16:S41–5.

    Article  Google Scholar 

  28. Turner RC, Millns H, Neil HA, Stratton IM, Manley SE, Matthews DR, et al. Risk factors for coronary artery disease in non-insulin dependent diabetes mellitus: United Kingdom Prospective Diabetes Study (UKPDS: 23). Br Med J. 1998;316(7134):823–8.

    Article  CAS  Google Scholar 

  29. Usitupa MI, Niskanen LK, Siitonen O, Voutilainen E, Pyorala K. Ten-year cardiovascular mortality in relation to risk factors and abnormalities in lipoprotein composition in type 2 (non-insulin-dependent) diabetic and non-diabetic subjects. Diabetologia. 1993;36:1175–84.

    Article  Google Scholar 

  30. Assmann G, Schulte H. The Prospective Cardiovascular Munster (PROCAM) study: prevalence of hyperlipidemia in persons with hypertension and/or diabetes mellitus and the relationship to coronary heart disease. Am Heart J. 1988;116(6 Pt 2):1713–24.

    Article  CAS  PubMed  Google Scholar 

  31. Somaratne JB, Whalley GA, Poppe KK, ter Bals MM, Wadams G, Pearl A, Bagg W, Doughty RN. Screening for left ventricular hypertrophy in patients with type 2 diabetes mellitus in the community. Cardiovasc Diabetol. 2011;10:29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Govind S, Saha S, Brodin LA, Ramesh SS, Arvind SR, Quintana M. Impaired myocardial functional reserve in hypertension and diabetes mellitus without coronary artery disease: searching for the possible link with congestive heart failure in the myocardial Doppler in diabetes (MYDID) study II. Am J Hypertens. 2006;19(8):851–7; discussion 858.

    Article  PubMed  Google Scholar 

  33. Grossman E, Messerli FH, Goldbourt U. High blood pressure and diabetes mellitus: are all antihypertensive drugs created equal? Arch Intern Med. 2000;160(16):2447–52.

    Article  CAS  PubMed  Google Scholar 

  34. Lea JP, Nicholas SB. Diabetes mellitus and hypertension: key risk factors for kidney disease. J Natl Med Assoc. 2002;94(8 Suppl):7S–15S.

    PubMed  PubMed Central  Google Scholar 

  35. Knowler WC, Bennett PH, Ballintine EJ. Increased incidence of retinopathy in diabetics with elevated blood pressure. A 6-year follow-up study in Pima Indians. N Engl J Med. 1980;302(12):645–50.

    Article  CAS  PubMed  Google Scholar 

  36. Zanchetti A, Ruilope LM. Antihypertensive treatment in patients with type-2 diabetes mellitus: what guidance from recent controlled randomized trials? J Hypertens. 2002;20:2099.2110.

    Google Scholar 

  37. Stratton IM, Adler AI, Neil HA, Matthews DR, Manley SE, Cull CA, et al. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. Br Med J. 2000;321:405–12.

    Article  CAS  Google Scholar 

  38. Barth JH, Marshall SM, Watson ID. Consensus meeting on reporting glycated haemoglobin and estimated average glucose in the UK: report to the National Director for Diabetes, Department of Health. Ann Clin Biochem. 2008;45(Pt 4):343–4.

    Article  PubMed  Google Scholar 

  39. Adler AI, Stratton IM, Neil HA, Yudkin JS, Matthews DR, Cull CA, et al. Association of systolic blood pressure with macrovascular and microvascular complications of type 2 diabetes (UKPDS 36): prospective observational study. Br Med J. 2000;321(7258):412–9.

    Article  CAS  Google Scholar 

  40. Fogari R, Zoppi A, Malamani GD, Lazzari P, Destro M, Corradi L. Ambulatory blood pressure monitoring in normotensive and hypertensive type 2 diabetes. Prevalence of impaired diurnal blood pressure patterns. Am J Hypertens. 1993;6:1–7.

    Article  CAS  PubMed  Google Scholar 

  41. Grossman E, Shemesh J, Motro M. Hypertensive patients with diabetes mellitus have higher heart rate and pulse pressure. J Hypertens. 2002;20:S60.

    Google Scholar 

  42. Pop-Busui R. Cardiac autonomic neuropathy in diabetes: a clinical perspective. Diabetes Care. 2010;33:434–41.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Ozawa M, Tamura K, Iwatsubo K, Matsushita K, Sakai M, Tsurumi-Ikeya Y, et al. Ambulatory blood pressure variability is increased in diabetic hypertensives. Clin Exp Hypertens. 2008;30:213–24.

    Article  PubMed  Google Scholar 

  44. Gyberg V, De Bacquer D, De Backer G, Jennings C, Kotseva K, Mellbin L, Schnell O, Tuomilehto J, Wood D, Ryden L, et al. Patients with coronary artery disease and diabetes need improved management: a report from the EUROASPIRE IV survey: a registry from the EuroObservational Research Programme of the European Society of Cardiology. Cardiovasc Diabetol. 2015;14:133.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. American Diabetes Association. Standards of medical care in diabetes-2012. Diabetes Care. 2012;35(Suppl 1):S11–63.

    Google Scholar 

  46. Appel LJ, Moore TJ, Obarzanek E, Vollmer WM, Svetkey LP, Sacks FM, et al. A clinical trial of the effects of dietary patterns on blood pressure. DASH Collaborative Research Group. N Engl J Med. 1997;336:1117–24.

    Article  CAS  PubMed  Google Scholar 

  47. James PA, Oparil S, Carter BL, Cushman WC, Dennison-Himmelfarb C, Handler J, et al. 2014 evidence-based guideline for the management of high blood pressure in adults: report from the panel members appointed to the Eighth Joint National Committee (JNC 8). JAMA. 2014;311(5):507–20.

    Article  CAS  PubMed  Google Scholar 

  48. Mancia G, Fagard R, Narkiewicz K, Redon J, Zanchetti A, Bohm M, et al. 2013 ESH/ESC Guidelines for the management of arterial hypertension: the task force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). J Hypertens. 2013;31(7):1281–357.

    Article  CAS  PubMed  Google Scholar 

  49. Cushman WC, Evans GW, Byington RP, Goff DC Jr, Grimm RH Jr, Cutler JA, et al. Effects of intensive blood- pressure control in type 2 diabetes mellitus. N Engl J Med. 2010;362(17):1575–85.

    Article  PubMed  CAS  Google Scholar 

  50. Wright JT Jr, Williamson JD, Whelton PK, Snyder JK, Sink KM, Rocco MV, Reboussin DM, Rahman M, Oparil S, Lewis CE, et al. A randomized trial of intensive versus standard blood-pressure control. N Engl J Med. 2015;373(22):2103–16.

    Article  CAS  PubMed  Google Scholar 

  51. Reboldi G, Gentile G, Angeli F, Ambrosio G, Mancia G, Verdecchia P. Effects of intensive blood pressure reduction on myocardial infarction and stroke in diabetes: a meta-analysis in 73,913 patients. J Hypertens. 2011;29(7):1253–69.

    Article  CAS  PubMed  Google Scholar 

  52. Solini A, Grossman E. What should be the target blood pressure in elderly patients with diabetes? Diabetes Care. 2016;39(Suppl 2):S234–43.

    Article  CAS  PubMed  Google Scholar 

  53. Scheen AJ. Renin-angiotensin system inhibition prevents type 2 diabetes mellitus. Part 2. Overview of physiological and biochemical mechanisms. Diabetes Metab. 2004;30(6):498–505.

    Article  CAS  PubMed  Google Scholar 

  54. Weber MA, Jamerson K, Bakris GL, Weir MR, Zappe D, Zhang Y, Dahlof B, Velazquez EJ, Pitt B. Effects of body size and hypertension treatments on cardiovascular event rates: subanalysis of the ACCOMPLISH randomised controlled trial. Lancet. 2013;381(9866):537–45.

    Article  PubMed  Google Scholar 

  55. Varga-Szabo D, Pleines I, Nieswandt B. Cell adhesion mechanisms in platelets. Arterioscler Thromb Vasc Biol. 2008;28:403–12.

    Article  CAS  PubMed  Google Scholar 

  56. Gurbel PA, Bliden KP, DiChiara J, et al. Evaluation of dose related effects of aspirin on platelet function: results from the Aspirin-Induced Platelet Effect (ASPECT) study. Circulation. 2007;115:3156–64.

    Article  CAS  PubMed  Google Scholar 

  57. Windecker S, Kolh P, Alfonso F, Collet JP, Cremer J, Falk V, et al. ESC/EACTS Guidelines on myocardial revascularization. Eur Heart J. 2014;54–69:2014. https://doi.org/10.1093/eurheartj/ehu278.

    Article  Google Scholar 

  58. Price MJ, Berger PB, Teirstein PS, et al. Standard- vs. high-dose clopidogrel based on platelet function testing after percutaneous coronary intervention: the GRAVITAS randomized trial. JAMA. 2011;205(11):1097–105.

    Article  Google Scholar 

  59. Thukkani AK, Agrawal K, Prince L, Smoot KJ, Dufour AB, Cho K, et al. Long-term outcomes in patients with diabetes mellitus related to prolonging clopidogrel more than 12 months after coronary stenting. J Am Coll Cardiol. 2015;66(10). https://doi.org/10.1016/j.jacc.2015.06.1339

  60. Wiviott SD, Braunwald E, McCabe CH, et al. Prasugrel versus clopidogrel in patients with acute coronary syndromes. N Engl J Med. 2007;357(20):2001–15.

    Article  CAS  PubMed  Google Scholar 

  61. Roe MT, Goodman SG, Ohman EM, et al. Elderly patients with acute coronary syndromes managed without revascularization: insights into the safety of long-term dual antiplatelet therapy with reduced-dose prasugrel versus standard-dose clopidogrel. Circulation. 2013;128(8):823–33.

    Article  CAS  PubMed  Google Scholar 

  62. Wallentin L, Becker RC, Budaj A, Cannon CP, Emanuelsson H, Held C, et al. Ticagrelor versus clopidogrel in patients with acute coronary syndromes. N Engl J Med. 2009;361:1045–57. https://doi.org/10.1056/NEJMoa0904327.

    Article  CAS  PubMed  Google Scholar 

  63. Angiolillo DJ, Capranzano P, Goto S, et al. A randomized study assessing the impact of cilostazol on platelet function profiles in patients with diabetes mellitus and coronary artery disease on dual antiplatelet therapy: results of the OPTIMUS-2 study. Eur Heart J. 2008;29:2202–11.

    Article  CAS  PubMed  Google Scholar 

  64. Stone NJ, Robinson J, Lichtenstein AH, Merz NB, Lloyd-Jones DM, Blum CB, et al. 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults. J Am Coll Cardiol. 2013. https://doi.org/10.1016/j.jacc.2013.11.002.

  65. Hulten E, Jackson JL, Douglas K, et al. The effect of early, intensive statin therapy on acute coronary syndrome: a meta-analysis of randomized controlled trials. Arch Intern Med. 2006;166(17):1814–21.

    Article  CAS  PubMed  Google Scholar 

  66. Heart Protection Study Collaborative Group. MRC/BHF Heart Protection Study of cholesterol-lowering with simvastatin in 5963 people with diabetes: a randomised placebo-controlled trial. Lancet. 2003;361(9374):2005–16.

    Article  CAS  Google Scholar 

  67. Murphy SA, Cannon CP, Wiviott SD, et al. Reduction in recurrent cardiovascular events with intensive lipid-lowering statin therapy compared with moderate lipid-lowering statin therapy after acute coronary syndromes. J Am Coll Cardiol. 2009;54(25):2358–62.

    Article  CAS  PubMed  Google Scholar 

  68. Taylor AJ, Sullenberger LE, Lee HJ, et al. Arterial Biology for the Investigation of the Treatment Effects of Reducing Cholesterol (ARBITER) 2: A double-blind, placebo-controlled study of extended-release niacin on atherosclerosis progression in secondary prevention patients treated with statins. Circulation. 2004;110(23):3512–7.

    Article  CAS  PubMed  Google Scholar 

  69. ACCORD Study Group. Effects of combination lipid therapy in type 2 diabetes mellitus. N Engl J Med. 2010;362(17):1563–74.

    Article  Google Scholar 

  70. Baigent C, Landray MJ, Reith C, et al. The effects of lowering LDL cholesterol with simvastatin plus ezetimibe in patients with chronic kidney disease (Study of Heart and Renal Protection): a randomized placebo-controlled trial. Lancet. 2011;377(9784):2181–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Saremi A, Schwenke DC, Buchanan TA, et al. Pioglitazone slows progression of atherosclerosis in prediabetes independent of changes in cardiovascular risk factors. Arterioscler Thromb Vasc Biol. 2013;33(2):393–9.

    Article  CAS  PubMed  Google Scholar 

  72. Holman RR, Paul SK, Bethel MA, et al. 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med. 2008;359(15):1577–89.

    Article  CAS  PubMed  Google Scholar 

  73. American Diabetes Association Standards of Medical Care in Diabetes – 2017. Diabetes Care. 2017;40(Suppl 1):S1–S138.

    Google Scholar 

  74. Inzucchi SE, Bergenstal RM, Buse JB, et al. Management of hyperglycemia in type 2 diabetes: a patient-centered approach: position statement of the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care. 2012;35:1364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. University Group Diabetes Program. Effects of hypoglycemic agents on vascular complications in patients with adult-onset diabetes. Diabetes. 1982;31(Suppl 5):1–81.

    Google Scholar 

  76. Flynn DM, Smith AH, Treadway JL, Levy CB, Soeller WC, Boettner WA, et al. The sulfonylurea glipizide does not inhibit ischemic preconditioning in anesthetized rabbits. Cardiovasc Drugs Ther. 2005;19:337–46.

    Article  CAS  PubMed  Google Scholar 

  77. Mocanu MM, Maddock HL, Baxter GF, Lawrence CL, Standen NB, Yellon DM. Glimepiride, a novel sulfonylurea, does not abolish myocardial protection afforded by either ischemic preconditioning or diazoxide. Circulation. 2001;103:3111–6.

    Article  CAS  PubMed  Google Scholar 

  78. Cleveland JC, Meldrum DR, Brian S, Cain BS, Banerjee A, Alden H, Harken AH. Oral sulfonylurea hypoglycemic agents prevent ischemic preconditioning in human myocardium: two paradoxes revisited. Circulation. 1997;96:29–32.

    Article  CAS  PubMed  Google Scholar 

  79. Schramm TK, Gislason GH, Vaag A, et al. Mortality and cardiovascular risk associated with different insulin secretagogues compared with metformin in type 2 diabetes, with or without a previous myocardial infarction: a nationwide study. Eur Heart J. 2011;32(15):1900–8. Erratum in: Eur Heart J. 2012 May;33(10):1183.

    Article  CAS  PubMed  Google Scholar 

  80. Inzucchi SE, McGuire DK. New drugs for the treatment of diabetes. Circulation. 2008;117:574–84.

    Article  PubMed  Google Scholar 

  81. Dormandy JA, Charbonnel B, Eckland DJ, Erdmann E, Massi-Benedetti M, Moules IK, et al. Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study. Lancet. 2005;366:1279–89.

    Article  CAS  PubMed  Google Scholar 

  82. Lincoff AM, Wolski K, Nicholls SJ, Nissen SE. Pioglitazone and risk of cardiovascular events in patients with type 2 diabetes mellitus: a meta-analysis of randomized trials. JAMA. 2007;12(298):1180–8.

    Article  Google Scholar 

  83. Nissen SE, Wolski K. Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med. 2007;356:2457–71.

    Article  CAS  PubMed  Google Scholar 

  84. Singh S, Loke YK, Furberg CD. Long-term risk of cardiovascular events with rosiglitazone: a meta-analysis. JAMA. 2007;298:1189–95.

    Article  CAS  PubMed  Google Scholar 

  85. Monami M, Ahren B, Dicembrini I, Mannucd E. Dipeptidyl peptidase-4 inhibitors and cardiovascular risk: a meta-analysis of randomized clinical trials. Diabetes Obes Metab. 2013;15(2):112–20.

    Article  CAS  PubMed  Google Scholar 

  86. Scirica BM, Bhatt DL, Braunwald E, et al. Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N Engl J Med. 2013;369:1317.

    Article  CAS  PubMed  Google Scholar 

  87. White WB, Cannon CP, Heller SR, et al.; EXAMINE Investigators. Alogliptin after acute coronary syndrome in patients with type 2 diabetes. N Engl J Med. 2013;369(14):1327–35.

    Google Scholar 

  88. Zinman B, Wanner C, Lachin JM, et al.; EMPA-REG OUTCOME Investigators. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373:2117–28.

    Google Scholar 

  89. Marso SP, Daniels GH, Brown-Frandsen K, et al.; LEADER Steering Committee; LEADER Trial Investigators. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2016;375:311–22.

    Google Scholar 

  90. Pfeffer MA, et al. Lixisenatide in patients with type 2 diabetes and acute coronary syndrome. N Engl J Med. 2015;373(23):2247–57.

    Article  CAS  PubMed  Google Scholar 

  91. Chiasson JL, Josse RG, Gomis R, Hanefeld M, Karasik A, Laakso M, for the STOP-NIDDM Trial Research Group. Acarbose treatment and the risk of cardiovascular disease and hypertension in patients with impaired glucose tolerance: the STOP-NIDDM trial. JAMA. 2003;290:486–94.

    Google Scholar 

  92. Mann DL, Zipes DP, Libby P, Bonow RO, Braunwald E, editors. Braunwald’s heart disease: a textbook of cardiovascular medicine. 10th ed. Philadelphia: Elsevier Saunders; 2015: Chap. 61. pp. 1375.

    Google Scholar 

  93. Gerstein HC, Bosch J, et al. Basal insulin and cardiovascular and other outcomes in dysglycemia. N Engl J Med. 2012;367:319–28.

    Article  CAS  PubMed  Google Scholar 

  94. Gaede P, Lund-Andersen H, Parving HH, Pedersen O. Effect of a multifactorial intervention on mortality in type 2 diabetes. N Engl J Med. 2008;358(6):580–91.

    Article  CAS  PubMed  Google Scholar 

  95. Goff DC, Lloyd-Jones DM, Bennett G, Coady S, D’Agostino RB, Gibbons R, et al. 2013 ACC/AHA cardiovascular risk assessment guideline. Circulation. 2014;129(Suppl 2):S49–73. https://doi.org/10.1161/01.cir.0000437741.48606.98.

    Article  PubMed  Google Scholar 

  96. Conroy RM, Pyorala K, Fitzgerald AP, Sans S, Menotti A, De Backer G, et al. Estimation of ten-year risk of fatal cardiovascular disease in Europe: the SCORE project. Eur Heart J. 2003;24:987–1003.

    Article  CAS  PubMed  Google Scholar 

  97. Piepoli MF, Hoes A, Agewall S, Albus C, Brotons C, Catapano AL, et al. 2016 European Guidelines on cardiovascular disease prevention in clinical practice. Eur Heart J. 2016;37:2315–81. https://doi.org/10.1093/eurheartj/ehw106.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Young LH, Wackers FJT, Chyun DA, et al.; DIAD Investigators. Cardiac outcomes after screening for asymptomatic coronary artery disease in patients with type 2 diabetes: the DIAD study: a randomized controlled trial. JAMA. 2009;301:1547–55.

    Google Scholar 

  99. Montalescot G, Sechtem U, Achenbach S, Andreotti F, Arden C, Budaj A, et al. 2013 ESC guidelines on the management of stable coronary artery disease. Eur Heart J. 2013;34:2949–3003. https://doi.org/10.1093/eurheartj/eht296.

    Article  PubMed  Google Scholar 

  100. Fihn SD, Gardin JM, Abrams J, Berra K, Blankenship JC, Dallas AP, et al. 2012 ACCF/AHA/ACP/AATS/PCNA/SCAI/STS guideline for the diagnosis and management of patients with stable ischemic heart disease. J Am Coll Cardiol. 2012;60(24):2564–603. https://doi.org/10.1016/j.jacc.2012.07.013.

    Article  PubMed  Google Scholar 

  101. Paech DC, Weston AR. A systematic review of the clinical effectiveness of 64-slice or higher computed tomography angiography as an alternative to invasive coronary angiography in the investigation of suspected coronary artery disease. BMC Cardiovasc Disord. 2011;11:32.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Center for Disease Control and Prevention. National diabetes fact sheet: National estimates and general information on diabetes and prediabetes in the US 2011. Washington, DC: US Department of Health and Human Services; 2011.

    Google Scholar 

  103. Norhammar A, Malmberg K, Diderholm E, Lagerqvist B, Lindahl B, Rydén L, Wallentin L. Diabetes mellitus: the major risk factor in unstable coronary artery disease even after consideration of the extent of coronary artery disease and benefits of revascularization. J Am Coll Cardiol. 2004;43:585–91. PMID: 14975468. https://doi.org/10.1016/j.jacc.2003.08.050.

    Article  PubMed  Google Scholar 

  104. Creager MA, Lüscher TF, Cosentino F, Beckman JA. Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: part I. Circulation. 2003;108:1527–32 [. PMID:14504252. https://doi.org/10.1161/01.CIR.0000091257.27563.32.

    Article  PubMed  Google Scholar 

  105. Dagenais GR, Lu J, Faxon DP, Kent K, Lago RM, Lezama C, Hueb W, Weiss M, Slater J, Frye RL. Effects of optimal medical treatment with or without coronary revascularization on angina and subsequent revascularizations in patients with type 2 diabetes mellitus and stable ischemic heart disease. Circulation. 2011;123:1492–500. PMID: 21444887. https://doi.org/10.1161/CIRCULATIONAHA.110.978247.

    Article  PubMed  Google Scholar 

  106. Hlatky MA, Boothroyd DB, Bravata DM, Boersma E, Booth J, Brooks MM, Carrié D, Clayton TC, Danchin N, Flather M, Hamm CW, Hueb WA, Kähler J, Kelsey SF, King SB, Kosinski AS, Lopes N, McDonald KM, Rodriguez A, Serruys P, Sigwart U, Stables RH, Owens DK, Pocock SJ. Coronary artery bypass surgery compared with percutaneous coronary interventions for multivessel disease: a collaborative analysis of individual patient data from ten randomized trials. Lancet. 2009;373:1190–7 [. PMID: 19303634. https://doi.org/10.1016/S0140-6736(09)60552-3.

    Article  PubMed  Google Scholar 

  107. American Diabetes Association. Executive summary: standards of medical care in diabetes-2012. Diabetes Care. 2012;35 Suppl 1:S4–S10.

    Google Scholar 

  108. Smith SC, Benjamin EJ, Bonow RO, Braun LT, Creager MA, Franklin BA, Gibbons RJ, Grundy SM, Hiratzka LF, Jones DW, Lloyd-Jones DM, Minissian M, Mosca L, Peterson ED, Sacco RL, Spertus J, Stein JH, Taubert KA. AHA/ACCF secondary prevention and risk reduction therapy for patients with coronary and other atherosclerotic vascular disease: 2011 update: a guideline from the American Heart Association and American College of Cardiology Foundation. Circulation. 2011;124:2458–73 [. PMID: 22052934. https://doi.org/10.1161/CIR.0b013e318235eb4d.

    Article  PubMed  Google Scholar 

  109. Stone GW, Ellis SG, Cox DA, Hermiller J, O’Shaughnessy C, Mann JT, Turco M, Caputo R, Bergin P, Greenberg J, Popma JJ, Russell ME. A polymer-based, paclitaxel-eluting stent in patients with coronary artery disease. N Engl J Med. 2004;350:221–31.

    Article  CAS  PubMed  Google Scholar 

  110. Stone GW, Rizvi A, Newman W, Mastali K, Wang JC, Caputo R, Doostzadeh J, Cao S, Simonton CA, Sudhir K, Lansky AJ, Cutlip DE, Kereiakes DJ. Everolimus-eluting versus paclitaxel-eluting stents in coronary artery disease. N Engl J Med. 2010;362:1663–74.

    Article  CAS  PubMed  Google Scholar 

  111. Nashef SA, Roques F, Sharples LD, Nilsson J, Smith C, Goldstone AR, Lockowandt U. EuroSCORE II. Eur J Cardiothorac Surg. 2012;41:734–44; discussion 744–745.

    Article  PubMed  Google Scholar 

  112. Serruys PW, Morice MC, Kappetein AP, Colombo A, Holmes DR, Mack MJ, Ståhle E, Feldman TE, van den Brand M, Bass EJ, Van Dyck N, Leadley K, Dawkins KD, Mohr FW. Percutaneous coronary intervention versus coronary-artery bypass grafting for severe coronary artery disease. N Engl J Med. 2009;360:961–72.

    Article  CAS  PubMed  Google Scholar 

  113. Mack MJ, Banning AP, Serruys PW, Morice MC, Taeymans Y, VanNooten G, Possati G, Crea F, Hood KL, Leadley K, Dawkins KD, Kappetein AP. Bypass versus drug-eluting stents at three years inSYNTAX patients with diabetes mellitus or metabolic syndrome. Ann Thorac Surg. 2011;92:2140–6.

    Article  PubMed  Google Scholar 

  114. Farkouh ME, Domanski M, Sleeper LA, Siami FS, Dangas G, Mack M, Yang M, Cohen DJ, Rosenberg Y, Solomon SD, Desai AS, Gersh BJ, Magnuson EA, Lansky A, Boineau R, Weinberger J, Ramanathan K, Sousa JE, Rankin J, Bhargava B, Buse J, Hueb W, Smith CR, Muratov V, Bansilal S, King S, Bertrand M, Fuster V. Strategies for multivessel revascularization in patients with diabetes. N Engl J Med. 2012;367:2375–84.

    Article  CAS  PubMed  Google Scholar 

  115. Baber U, Mehran R, Sharma SK, Brar S, Yu J, Suh JW, Kim HS, Park SJ, Kastrati A, de Waha A, Krishnan P, Moreno P, Sweeny J, Kim MC, Suleman J, Pyo R, Wiley J, Kovacic J, Kini AS, Dangas GD. Impact of the everolimus-eluting stent on stent thrombosis: a meta-analysis of 13 randomized trials. J Am Coll Cardiol. 2011;58:1569–77.

    Article  CAS  PubMed  Google Scholar 

  116. Bangalore S, Toklu B, Feit F. Response to letter regarding article, “Outcomes with coronary artery bypass graft surgery versus percutaneous coronary intervention for patients with diabetes mellitus: can newer generation drug-eluting stents bridge the gap?”. Circ Cardiovasc Interv. 2014;7:729.

    Article  PubMed  Google Scholar 

  117. Muramatsu T, Onuma Y, van Geuns RJ, Chevalier B, Patel TM, Seth A, Diletti R, García-García HM, Dorange CC, Veldhof S, Cheong WF, Ozaki Y, Whitbourn R, Bartorelli A, Stone GW, Abizaid A, Serruys PW. 1-year clinical outcomes of diabetic patients treated with everolimus-eluting bioresorbable vascular scaffolds: a pooled analysis of the ABSORB and the SPIRIT trials. JACC Cardiovasc Interv. 2014;7:482–93.

    Article  PubMed  Google Scholar 

  118. Onuma Y, Serruys PW. Bioresorbable scaffold: the advent of a new era in percutaneous coronary and peripheral revascularization? Circulation. 2011;123:779–97.

    Article  PubMed  Google Scholar 

  119. Acharya T, Kotak K, Fonarow GC, Cannon CP, Laskey WK, Peacock WF, et al. On behalf of GWTG Steering Committee and Investigators. Compliance with guideline-directed therapy in diabetic patients admitted with acute coronary syndrome: findings from AHA get with the guidelines – Coronary Artery Disease Program. https://doi.org/10.1016/j.ahj.2017.02.025

  120. Mackay MH, Ratner PA, Johnson JL, Humphries KH, Buller CE. Gender differences in symptoms of myocardial ischaemia. Eur Heart J. 2011;32:3107–14.

    Article  PubMed  Google Scholar 

  121. Gimenez MR, Reiter M, Twerenbold R, Reichlin T, Wildi K, Haaf P, et al. Sex specific chest pain characteristics in the early diagnosis of acute myocardial infarction. JAMA Intern Med. 2014;174(2):241–9.

    Article  Google Scholar 

  122. Diercks DB, Peacock WF, Hiestand BC, Chen AY, Pollack CV Jr, Kirk JD, et al. Frequency and consequences of recording an electrocardiogram >10 minutes after arrival in an emergency room in non-ST-segment elevation acute coronary syndromes (from the CRUSADE initiative). Am J Cardiol. 2006;97:437–42.

    Article  PubMed  Google Scholar 

  123. Savonitto S, Ardissino D, Granger CB, Morando G, Prando MD, Mafrici A, et al. Prognostic value of the admission electrocardiogram in acute coronary syndromes. JAMA. 1999;281:707–13.

    Article  CAS  PubMed  Google Scholar 

  124. Steg PG, James SK, Atar D, Badano LP, Blomstrom-Lundqvist C, Borger MA, et al. ESC guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation. Eur Heart J. 2012;33:2569–619.

    Article  CAS  PubMed  Google Scholar 

  125. Mueller C. Biomarkers and acute coronary syndromes: an update. Eur Heart J. 2014;35:552–6.

    Article  CAS  PubMed  Google Scholar 

  126. Thygesen K, Mair J, Giannitsis E, Mueller C, Lindahl B, Blankenberg S, et al. How to use high-sensitivity cardiac troponins in acute cardiac care. Eur Heart J. 2012;33:2252–7.

    Article  CAS  PubMed  Google Scholar 

  127. Irfan A, Twerenbold R, Reiter M, Reichlin T, Stelzig C, Freese M, et al. Determinants of high-sensitivity troponin T among patients with a noncardiac cause of chest pain. Am J Med. 2012;125:491–8.

    Article  CAS  PubMed  Google Scholar 

  128. Raskovalova T, Twerenbold R, Collinson PO, Keller T, Bouvaist H, Folli C, et al. Diagnostic accuracy of combined cardiac troponin and copeptin assessment for early rule-out of myocardial infarction: a systematic review and meta-analysis. Eur Heart J Acute Cardiovasc Care. 2014;3:18–27.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Maisel A, Mueller C, Neath SX, Christenson RH, Morgenthaler NG, McCord J, et al. Copeptin helps in the early detection of patients with acute myocardial infarction: primary results of the CHOPIN trial (Copeptin Helps in the early detection Of Patients with acute myocardial INfarction). J Am Coll Cardiol. 2013;62:150–60.

    Article  CAS  PubMed  Google Scholar 

  130. Reichlin T, Twerenbold R, Wildi K, Gimenez MR, Bergsma N, Haaf P, et al. Prospective validation of a 1-hour algorithm to rule-out and rule-in acute myocardial infarction using a high sensitivity cardiac troponin T assay. CMAJ. 2015;187:E243–52.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Grenne B, Eek C, Sjoli B, Dahlslett T, Uchto M, Hol PK, et al. Acute coronary occlusion in non-ST-elevation acute coronary syndrome: outcome and early identification by strain echocardiography. Heart. 2010;96:1550–6.

    Article  PubMed  Google Scholar 

  132. Antman EM, Cohen M, Bernink PJ, McCabe CH, Horacek T, Papuchis G, et al. The TIMI risk score for unstable angina/non-ST elevation MI: a method for prognostication and therapeutic decisión making. JAMA. 2000;284:835–42.

    Article  CAS  PubMed  Google Scholar 

  133. Morrow DA, Antman EM, Charlesworth A, Cairns R, Murphy SA, de Lemos JA, et al. TIMI risk score for ST-elevation myocardial infarction: a convenient, bedside, clinical score for risk assessment at presentation an intravenous nPA for treatment of infarcting myocardium early II trial substudy. Circulation. 2000;102:2031–7.

    Article  CAS  PubMed  Google Scholar 

  134. Fox KA, Dabbous OH, Goldberg RJ, Pieper KS, Eagle KA, de Werf V, et al. Prediction of risk of death and myocardial infarction in the six months after presentation with acute coronary syndrome: prospective multinational observational study (GRACE). BMJ. 2006;333:1091–4.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Cakar MA, Sahinkus S, Aydin E, Vatan MB, Keser N, Akdemir R, et al. Relation between the GRACE score and severity of atherosclerosis in acute coronary síndrome. J Cardiol. 2014;63:24–8.

    Article  PubMed  Google Scholar 

  136. Yan AT, Yan RT, Tan M, Eagle KA, Granger CB, Dabbous OH, et al. In-hospital revascularization and one-year outcome of acute coronary syndrome patients stratified by the GRACE risk score. Am J Cardiol. 2005;96(7):913–6.

    Article  PubMed  Google Scholar 

  137. Garg S, Sarno G, Serruys PW, Rodriguez AE, Bolognese L, Anselmi M, et al. Prediction of 1-year clinical outcomes using the SYNTAX score in patients with acute ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention: a substudy of the STRATEGY (Single High-Dose Bolus Tirofiban and Sirolimus-Eluting Stent Versus Abciximab and Bare-Metal Stent in Acute Myocardial Infarction) and MULTISTRATEGY (Multicenter Evaluation of Single High-Dose Bolus Tirofiban Versus Abciximab With Sirolimus-Eluting Stent or Bare-Metal Stent in Acute Myocardial Infarction Study) trials. JACC Cardiovasc Interv. 2011;4:66–75.

    Article  PubMed  Google Scholar 

  138. Morice MC, Serruys PW, Kappetein P, Feldman T, Stahle E, Colombo A, et al. Five-year outcomes in patients with left main disease treated with either percutaneous coronary intervention or coronary artery bypass grafting in the SYNTAX trial. Circulation. 2014;129:2388–94.

    Article  PubMed  Google Scholar 

  139. Farkouh ME, Domanski M, Sleeper LA, Siami FS, Dangas G, Mack M, et al. Strategies for multivessel revascularization in patients with diabetes. N Engl J Med. 2012;367:2375–84.

    Article  CAS  PubMed  Google Scholar 

  140. Subherwal S, Bach RG, Chen AY, Gage BF, Rao SV, Newby LK, et al. Baseline risk of major bleeding in non–ST-segment– elevation myocardial infarction the CRUSADE (Can Rapid risk stratification of Unstable angina patients Suppress ADverse outcomes with Early implementation of the ACC/AHA guidelines) bleeding score. Circulation. 2009;119:1873–82.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Franklin K, Goldberg RJ, Spencer F, Klein W, Budaj A, Brieger D, et al. Implications of diabetes in patients with acute coronary syndromes. The Global Registry of Acute Coronary Events. Arch Intern Med. 2004;164:1457–63.

    Article  PubMed  Google Scholar 

  142. Finfer S, Chittock DR, Su SY, Blair D, Foster D, Dhingra V, et al.; The NICE-SUGAR Study Investigators. Intensive versus conventional glucose control in critically ill patients. N Engl J Med. 2009;360:1283–97.

    Google Scholar 

  143. Wiviott SD, Braunwald E, Angiolillo DJ, Meisel S, Dalby AJ, Verheugt FW, et al.; TRITON-TIMI 38 Investigators. Greater clinical benefit of more intensive oral antiplatelet therapy with prasugrel in patients with diabetes mellitus in the trial to assess improvement in therapeutic outcomes by optimizing platelet inhibition with prasugrel-Thrombolysis in Myocardial Infarction 38. Circulation. 2008;118:1626–36.

    Google Scholar 

  144. James S, Angiolillo DJ, Cornel JH, Erlinge D, Husted S, Kontny F, et al; PLATO Study Group. Ticagrelor vs. clopidogrel in patients with acute coronary syndromes and diabetes: a substudy from the PLATelet inhibition and patient Outcomes (PLATO) trial. Eur Heart J. 2010;31:3006–16.

    Google Scholar 

  145. Goodman SG, Cohen M, Bigonzi F, Gurfinkel EP, Radley DR, Le Iouer V, et al. Randomized trial of low molecular weight heparin (enoxaparin) versus unfractionated heparin for unstable coronary artery disease: one-year results of the ESSENCE Study. Efficacy and Safety of Subcutaneous Enoxaparin in Non-Q Wave Coronary Events. J Am Coll Cardiol. 2000;36:693–8.

    Article  CAS  PubMed  Google Scholar 

  146. White HD, Kleiman NS, Mahaffey KW, Lokhnygina Y, Pieper KS, Chiswell K, et al. Efficacy and safety of enoxaparin compared with unfractionated heparin in high-risk patients with non-ST-segment elevation acute coronary syndrome undergoing percutaneous coronary intervention in the Superior Yield of the New Strategy of Enoxaparin, Revascularization and Glycoprotein IIb/IIIa Inhibitors (SYNERGY) trial. Am Heart J. 2006;152:1042–50.

    Article  CAS  PubMed  Google Scholar 

  147. Stone GW, White HD, Ohman EM, Bertrand ME, Lincoff AM, McLaurin BT, et al., for the Acute Catheterization and Urgent Intervention Triage strategy (ACUITY) trial investigators. Bivalirudin in patients with acute coronary syndromes undergoing percutaneous coronary intervention: a subgroup analysis from the Acute Catheterization and Urgent Intervention Triage strategy (ACUITY) trial. Lancet. 2007;369:907–19.

    Google Scholar 

  148. Feit F, Manoukian SV, Ebrahimi R, Pollack CV, Ohman EM, Attubato MJ, et al. Safety and efficacy of bivalirudin monotherapy in patients with diabetes mellitus and acute coronary syndromes: a report from the ACUITY (Acute Catheterization and Urgent Intervention Triage Strategy) trial. J Am Coll Cardiol. 2008;51:1645–52.

    Article  CAS  PubMed  Google Scholar 

  149. Roffi M, Patrono C, Collet JP, Mueller C, Valgimigli M, Andreotti F, et al. 2015 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Task Force for the Management of Acute Coronary Syndromes in Patients Presenting without Persistent ST-Segment Elevation of the European Society of Cardiology (ESC). Eur Heart J. 2016;37:267–315.

    Article  CAS  PubMed  Google Scholar 

  150. Amsterdam EA, Wenger NK, Brindis RG, Casey DE, Ganiats TG, Holmes DR, et al. 2014 AHA/ACC guideline for the management of patients with non-ST-elevation acute coronary syndromes. A report of the American College of Cardiology/American Heart Association Task Force on practice guidelines. Circulation. 2014;130:e344–426.

    PubMed  Google Scholar 

  151. Prasad A, Sotne G, Suckey T, et al. Impact of diabetes mellitus on myocardial perfusion after primary angioplasty in patients with acute myocardial infarction. J Am Coll Cardiol. 2005;45:508–14.

    Article  PubMed  Google Scholar 

  152. Feldman LJ, Coste P, Furber A, et al.; Optimal STenting-2 Investigators. Incomplete resolution of ST-segment elevation is a marker of transient microcirculatory dysfunction after stenting for acute myocardial infarction. Circulation. 2003;107:2684–9.

    Google Scholar 

  153. Biondi-Zoccai GG, Abbate A, Liuzzo G, Biasucci LM. Atherothrombosis, inflammation, and diabetes. J Am Coll Cardiol. 2003;41:1071–7.

    Article  CAS  PubMed  Google Scholar 

  154. Nuo L, Gui Y, Chen M. Comparing the adverse clinical outcomes in patients with non-insulin treated type 2 diabetes mellitus and patients without type 2 diabetes mellitus following percutaneous coronary intervention: a systematic review and meta-analysis. BMC Cardiovasc Disord. 2016;16:238.

    Article  Google Scholar 

  155. Witzenbichler B, Mehran R, Guagliumi G, et al. Impact of diabetes mellitus on the safety and effectiveness of bivalirudin in patients with acute myocardial infarction undergoing primary angioplasty: analysis from the HORIZONS-AMI (Harmonizing Outcomes with RevasculariZatiON and Stents in Acute Myocardial Infarction) trial. JACC Cardiovasc Interv. 2011;4(7):760–8.

    Article  PubMed  Google Scholar 

  156. Alabas OA, Hall M, Rutherford MJ, et al. Long-term excess mortality associates with diabetes following acute myocardial infarction: a population-base cohort study. J Epidemiol Community Health. 2017;71:25–32.

    Article  CAS  PubMed  Google Scholar 

  157. Mathew V, Gersh BJ, Williams BA, et al. Outcomes in patients with diabetes mellitus undergoing percutaneous coronary intervention in the current era: a report from the Prevention of REStenosis with Tranilast and its Outcomes (PRESTO) trial. Circulation. 2004;109(4):476–80.

    Article  PubMed  Google Scholar 

  158. Dangas GD, Farkouh ME, Sleeper LA, et al. Long-term outcome of PCI versus CABG in insulin and non-insulin-treated diabetic patients: results from the FREEDOM trial. J Am Coll Cardiol. 2014;64(12):1189–97.

    Article  CAS  PubMed  Google Scholar 

  159. Mahmoud A, Elgendy I, Mansoor H, et al. Early invasive strategy and in-hospital survival among diabetic with non-ST-elevation acute coronary syndromes: a contemporary national insight. J Am Heart Assoc. 2017;6:1–14.

    Article  Google Scholar 

  160. Cannon CP, Weintraub WS, Demopoulos LA, et al. Comparison of early invasive and conservative strategies in patients with unstable coronary syndromes treated with the glycoprotein IIb/IIIa inhibitor tirofiban. N Engl J Med. 2001;344:1879–87.x.

    Article  CAS  PubMed  Google Scholar 

  161. Carson JL, Scholz PM, Chen AY, et al. Diabetes mellitus increases short-term mortality and morbidity in patients undergoing coronary artery bypass graft surgery. J Am Coll Cardiol. 2002;40:418–23.

    Article  PubMed  Google Scholar 

  162. Timmer JR, Ottervanger JP, de Boer MJ, et al. Primary percutaneous coronary intervention compared with fibrinolysis for myocardial infarction in diabetes mellitus: results from the Primary Coronary Angioplasty vs Thrombolysis-2 trial. Arch Intern Med. 2007;167(13):1353–9.

    Article  PubMed  Google Scholar 

  163. Angeja BG, de Lemos J, Murphy SA, et al. Impact of diabetes mellitus on epicardial and microvascular flow after fibrinolytic therapy. Am Heart J. 2002;144:649–56.

    Article  PubMed  Google Scholar 

  164. Leavitt BJ, Sheppard L, Maloney C, et al. Effect of diabetes and associated conditions on long-term survival after coronary artery bypass graft surgery. Circulation. 2004;110(11 Suppl 1):II41–4.

    PubMed  Google Scholar 

  165. Kannel WB, McGee DL. Diabetes and cardiovascular disease. The Framingham study. JAMA. 1979;241:2035–8.

    Article  CAS  PubMed  Google Scholar 

  166. Bell DS, Lukas MA, Holdbrook FK, Fowler MB. The effect of carvedilol on mortality risk in heart failure patients with diabetes: results of a meta-analysis. Curr Med Res Opin. 2006;22(2):287–96.

    Article  CAS  PubMed  Google Scholar 

  167. Van Deursen VM, Urso R, Laroche C, Damman K, Dahlström U, Tavazzi L. Co-morbidities in patients with heart failure: an analysis of the European Heart Failure Pilot Survey. Eur J Heart Fail. 2014;16(1):103–1.

    Article  PubMed  Google Scholar 

  168. Kasznicki J, Drzewoski J. Heart failure in the diabetic population-pathophysiology, diagnosis and management. Arch Med Sci. 2014;10(3):546–56.

    Article  PubMed  PubMed Central  Google Scholar 

  169. Rubler S, Dlugash J, Yuceoglu YZ, Kumral T, Branwood AW, Grishman A. New type of cardiomyopathy associated with diabetic glomerulosclerosis. Am J Cardiol. 1972;30:595–602.

    Article  CAS  PubMed  Google Scholar 

  170. Sharma V, McNeill JH. Diabetic cardiomyopathy: where are we 40 years later? Can J Cardiol. 2006;22(4):305–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Aneja A, Tang WH, Bansilal S, Garcia MJ, Farkouh M. Diabetic cardiomyopathy: insights into pathogenesis, diagnostic challenges, and therapeutic options. Am J Med. 2008;121:748–57.

    Article  PubMed  Google Scholar 

  172. Devereux RB, Roman MJ, Paranicas M, et al. Impact of diabetes on cardiac structure and function: the Strong Heart Study. Circulation. 2000;101:2271–6.

    Article  CAS  PubMed  Google Scholar 

  173. Young ME, Mcnulty P, Taegtmeyer H. Adaptation and maladaptation of the heart in diabetes: part II potential mechanisms. Circulation. 2002;105:1861–70.

    Article  CAS  PubMed  Google Scholar 

  174. Fischer VW, Barner HB, Larose LS. Pathomorphologic aspects of muscular tissue in diabetes mellitus. Hum Pathol. 1984;15:1127–36.

    Article  CAS  PubMed  Google Scholar 

  175. Shimizu M, Umeda K, Sugihara N, et al. Collagen remodelling in myocardia of diabetic patients. J Clin Pathol. 1993;46:32–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Fukushima A, Lopaschuk GA. Cardiac fatty acid oxidation in heart failure associated with obesity and diabetes. Biochim Biophys Acta. 2016;1861:1525–34.

    Article  CAS  PubMed  Google Scholar 

  177. Negishi K, Seicean S, Negishi T, Yingchoncharoen T, Aljaroudi W, Marwick TH. Relation of heart-rate recovery to new onset heart failure and atrial fibrillation in patients with diabetes mellitus and preserved ejection fraction. Am J Cardiol. 2013;111:748–53.

    Article  PubMed  Google Scholar 

  178. Kuch B, von Scheidt W, Peter W, Doring A, Piehlmeier W, Landgraf R, Meisinger C. Sex-specific determinants of left ventricular mass in pre-diabetic and type 2 diabetic subjects: the Augsburg Diabetes Family Study. Diabetes Care. 2007;30:946–52.

    Article  PubMed  Google Scholar 

  179. Eguchi K, Boden BA, Jin Z, Rundek T, Sacco R, Homma S, et al. Association between diabetes mellitus and left ventricular hypertrophy in a multi-ethnic population. Am J Cardiol. 2008;101(12):1787–91.

    Article  PubMed  PubMed Central  Google Scholar 

  180. Sacco RL, Anand K, Lee H-S, Boden-Albala B, Stabler S, Allen R, Paik MC. Homocysteine and the risk of ischemic stroke in a triethnic cohort: the Northern Manhattan Study. Stroke. 2004;35:2263–9.

    Article  CAS  PubMed  Google Scholar 

  181. Brooks BA, Franjic B, Ban CR, Swaraj K, Yue DK, Celermajer DS, et al. Diastolic dysfunction and abnormalities of the microcirculation in type 2 diabetes. Diabetes Obes Metab. 2008;10(9):739–46.

    Article  CAS  PubMed  Google Scholar 

  182. Fang ZY, Schull-Meade R, Leano R, Mottram PM, Prins JB, Marwick TH. Screening for heart disease in diabetic subjects. Am Heart J. 2005;149(2):349–54.

    Article  PubMed  Google Scholar 

  183. Fang ZY, Schull-Meade R, Prins JB, Marwick TH. Determinants of subclinical diabetic heart disease. Diabetologia. 2005;48:394–402.

    Article  CAS  PubMed  Google Scholar 

  184. From AM, Scott CG, Chen HH. The development of heart failure in patients with diabetes mellitus and pre-clinical diastolic dysfunction a population-based study. J Am Coll Cardiol. 2010;55:300–5.

    Article  PubMed  Google Scholar 

  185. Lindman B, Dávila-Román V, Mann D, Mc Nulty S, Semigran M, Lewis G, et al. Cardiovascular phenotype in HFpEF patients with or without diabetes: a RELAX trial ancillary study. J Am Coll Cardiol. 2014;64:541–9.

    Article  PubMed  PubMed Central  Google Scholar 

  186. Van Der Horst IC, De Boer RA, Hillege HL, Boomsma F, Voors AA, Van Veldhuisen DJ. Neurohormonal profile of patients with heart failure and diabetes. Neth Heart J. 2010;18(4):190–6.

    Article  PubMed  PubMed Central  Google Scholar 

  187. American Diabetes Association. Standards of medical care in diabetes: 2008. Diabetes Care. 2008;31(suppl1):S12–54.

    Article  CAS  Google Scholar 

  188. UK Prospective Diabetes Study Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet. 1998;352:837–53.

    Article  Google Scholar 

  189. Skyler J, Bergenstal R, Bonow R, Buse J, Deedwania P, Gale E, et al. Intensive glycemic control and the prevention of cardiovascular events: implications of the ACCORD, ADVANCE, and VA Diabetes Trials A Position Statement of the American Diabetes Association and a Scientific Statement of the American College of Cardiology Foundation and the American Heart Association. Circulation. 2009;119(2):351–7.

    Article  PubMed  Google Scholar 

  190. Yusuf S, Sleight P, Pogue J, et al. Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients. The Heart Outcomes Prevention Evaluation Study Investigators. N Engl J Med. 2000;342:145–53.

    Article  CAS  PubMed  Google Scholar 

  191. EURopean trial On reduction of cardiac events with Perindopril in stable coronary Artery disease Investigators. Efficacy of perindopril in reduction of cardiovascular events among patients with stable coronary artery disease: randomised, double blind, placebo-controlled, multicentre trial (the EUROPA study). Lancet. 2003;362:782–8.

    Article  CAS  Google Scholar 

  192. Pham D, De Albuquerque N, Darren K, Neeland I. Impact of empagliflozin in patients with diabetes and heart failure. Trends Cardiovasc Med. 2017;27:144–15.

    Article  CAS  PubMed  Google Scholar 

  193. Fitchett D, Zinman B, Wanner C, Lachin JM, Hantel S, Salsali A, et al. Heart failure outcomes with empagliflozin in patients with type 2 diabetes at high cardiovascular risk: results of the EMPA-REGOUTCOME trial. Eur Heart J. 2016;37:1526–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Seferovic JP, Claggett B, Seidelmann SB, Seely EW, Packer M, Zile MR. Effect of sacubitril/valsartan versus enalapril on glycaemic control in patients with heart failure and diabetes: a post-hoc analysis from the PARADIGM-HF trial. Lancet Diabetes Endocrinol. 2017. pii: S2213-8587(17)30087-6.

    Google Scholar 

  195. The Digitalis Investigation Group Investigators. The effect of digoxin on mortality and morbidity in patients with heart failure. N Engl J Med. 1997;336:525–33.

    Article  Google Scholar 

  196. Coady MA, Rizzo JA, Elefteriades JA. Pathologic variants of thoracic aortic dissections: penetrating atherosclerotic ulcers and intramural hematomas. Cardiol Clin. 1999;17(4):637–57.

    Article  CAS  PubMed  Google Scholar 

  197. Nienaber CA. Pathophysiology of acute aortic syndromes. In: Baliga RR, Nienaber CA, Isselbacher EM, Eagle KA, editors. Aortic dissection and related syndromes. New York: Springer; 2007. p. 17–43.

    Chapter  Google Scholar 

  198. He X, Liu X, Liu W, Wang B, et al. Association between diabetes and risk of aortic dissection: a case-control study in a Chinese population. PLoS One. 2015;10(11).

    Google Scholar 

  199. Theivacumar NS, Stephenson MA, Mistry H, Valenti D. Diabetes mellitus and aortic aneurysm rupture: a favorable association? Vasc Endovasc Surg. 2014;48(1):45–50.

    Article  Google Scholar 

  200. Da Silva ES, Gornati VC, Casella IB, et al. The similarities and differences among patients with abdominal aortic aneurysms referred to a tertiary hospital and found at necropsy. Vascular. 2015;23(4):411–8.

    Article  PubMed  Google Scholar 

  201. Lederle FA. The strange relationship between diabetes and abdominal aortic aneurysm. Eur J Vasc Endovasc Surg. 2012;43(3):254–6.

    Article  CAS  PubMed  Google Scholar 

  202. Mosch J, Gleissner CA, Body S, Aikawa E. Histopathological assessment of calcification and inflammation of calcific aortic valves from patients with and without diabetes mellitus. Histol Histopathol. 2017;32(3):293–306.

    CAS  PubMed  Google Scholar 

  203. Rosenhek R, Binder T, Porenta G, Lang I, Christ G, Schemper M, Maurer G, Baumgartner H. Predictors of outcome in severe, asymptomatic aortic stenosis. N Engl J Med. 2000;343:611–7.

    Article  CAS  PubMed  Google Scholar 

  204. Testuz A, Nguyen V, Mathieu T, et al. Influence of metabolic syndrome and diabetes on progression of calcific aortic valve stenosis. Int J Cardiol. 2017;244:248–53.

    Article  PubMed  Google Scholar 

  205. Leon MB, Smith CR, Mack M, Miller DC, Moses JW, Svensson LG, Tuzcu EM, Webb JG, Fontana GP, Makkar RR, Brown DL, Block PC, Guyton RA, Pichard AD, Bavaria JE, Herrmann HC, Douglas PS, Petersen JL, Akin JJ, Anderson WN, Wang D, Pocock S; PARTNER Trial Investigators. Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery. N Engl J Med. 2010;363:1597–607.

    Google Scholar 

  206. Miki T, Yuda S, Kouzu H, Miura T. Diabetic cardiomyopathy: pathophysiology and clinical features. Heart Fail Rev. 2013;18:149–66.

    Article  PubMed  Google Scholar 

  207. Podlaha R, Falk A. The prevalence of diabetes mellitus and other risk factors of atherosclerosis in bradycardia requiring pacemaker treatment. Horm Metab Res Suppl. 1992;26:84–7.

    CAS  PubMed  Google Scholar 

  208. Sun H, Guan Y, Wang L, Zhao Y, Lv H, Bi X, et al. Influence of diabetes on cardiac resynchronization therapy in heart failure patients: a meta-analysis. BMC Cardiovasc Disord. 2015;15:25.

    Article  PubMed  PubMed Central  Google Scholar 

  209. Zhang Q, Liu T, Ng CY, Li G. Diabetes mellitus and atrial remodeling: mechanisms and potential upstream therapies. Cardiovasc Ther. 2014;32:233–41.

    Article  CAS  PubMed  Google Scholar 

  210. Goudis CA, Korantzopoulos P, Ntalas I, Kallergis EM, Liu T, Ketikoglou DG. Diabetes mellitus and atrial fibrillation: pathophysiological mechanisms and potential upstream therapies. Int J Cardiol. 2015;184:617–22.

    Article  PubMed  Google Scholar 

  211. Benjamin EJ, Levy D, Vaziri SM, D’Agostino RB, Belanger AJ, Wolf PA. Independent risk factors for atrial fibrillation in a population-based cohort. The Framingham Heart study. JAMA. 1994;271:840–4.

    Article  CAS  PubMed  Google Scholar 

  212. Movahed MR, Hashemzadeh M, Jamal MM. Diabetes mellitus is a strong independent risk for atrial fibrillation and flutter in addition to other cardiovascular disease. Int J Cardiol. 2005;105:315–8.

    Article  PubMed  Google Scholar 

  213. Huxley RR, Alonso A, Lopez FL, et al. Type 2 diabetes, glucose homeostasis and incident atrial fibrillation: the Atherosclerosis Risk in Communities study. Heart. 2012;98:133–8.

    Article  CAS  PubMed  Google Scholar 

  214. Huxley RR, Filion KB, Konety S, Alonso A. Meta-analysis of cohort and case-control studies of Type 2 diabetes mellitus and a risk of atrial fibrillation. Am J Cardiol. 2011;108:56–62.

    Article  PubMed  PubMed Central  Google Scholar 

  215. Codinach Huix P, Freixa PR. Miocardiopatía diabética: concepto, función cardiaca y patogenia. An Med Interna. 2002;19:313–20.

    CAS  PubMed  Google Scholar 

  216. Cryer PE. Death during intensive glycemic therapy of diabetes: Mechanisms and Implications. Am J Med. 2011;124:993–6.

    Article  PubMed  PubMed Central  Google Scholar 

  217. Tesfaye S, Boulton AJM, Dyck PJ, Freeman R, Horowitz M, Kempler P, et al. Diabetic neuropathies: update on definitions, diagnostic criteria, estimation of severity, and treatments. Diabetes Care. 2010;33:2285–93.

    Article  PubMed  PubMed Central  Google Scholar 

  218. Clemente D, Pereira T, Ribeiro S. Ventricular repolarization in diabetic patients: characterization and clinical implications. Arq Bras Cardiol. 2012;99:1015–22.

    Article  PubMed  Google Scholar 

  219. Nordin C. The case for hypoglycaemia as a proarrhythmic event: basic and clinical evidence. Diabetologia. 2010;53:1552–61.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Coutiño-Castelán, D. et al. (2019). Diabetes and Cardiovascular Disease. In: Rodriguez-Saldana, J. (eds) The Diabetes Textbook. Springer, Cham. https://doi.org/10.1007/978-3-030-11815-0_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11815-0_46

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11814-3

  • Online ISBN: 978-3-030-11815-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics