Obesity and Diabetes

  • Sean Wharton
  • Christy Costanian
  • Talia Gershon
  • Rebecca A. G. Christensen


The prevalence of obesity has been increasing globally. Due to the negative health effects, obesity has been recognized as a major public health concern. Obesity is defined as a body mass index (BMI) of greater than or equal to 30 kg/m2. The location (i.e., abdominal) and type of excess weight contribute to ill-health; thus methods such as waist circumference and body fat measurements are used in the assessment of obesity. In relation to obesity and type 2 diabetes (T2D), genetics, physical activity, and diet are key predictors to the development of these chronic conditions. Fortunately, treatment options for obesity and T2D are similar and can be categorized as lifestyle, pharmacological, or surgical. When medications or surgery is added to lifestyle interventions, there is much greater benefit in terms of weight loss and diabetes control over lifestyle interventions on their own.


Obesity Type 2 diabetes (T2D) Weight management Lifestyle Behavioral Pharmacological Bariatric surgery Physical activity Diet 



Bariatric surgery

is a type of surgical procedure that decreases the amount of calories a patient can consume and/or digests to result in significant weight loss. Types of bariatric surgery include Roux-en-Y gastric bypass, sleeve gastrectomy, and gastric banding.

Body fat

is the amount of subcutaneous and visceral fat in a person’s body which can be presented as an absolute value or percentage.

Body mass index

is the most common tool to assess obesity. It is calculated by dividing weight in kilograms by height in meters squared.

Metabolic surgery

is a newer term used to refer to bariatric surgery owing to the drastic improvements in metabolic conditions that have been observed post-surgery.

Malabsorptive bariatric surgery

is a bariatric surgery procedure that alters a patient’s digestive tract to decrease the amount of nutrients they can absorb from calories consumed. Examples of types of bariatric surgery that use this technique include the Roux-en-Y gastric bypass and biliopancreatic diversion with the duodenal switch.


is excess body weight associated with ill-health. Multiple objective methods exist to classify obesity, with a BMI greater than or equal to 30 kg/m2 the most common.

Restrictive bariatric surgery

is a bariatric surgery procedure that decreases the amount of calories a patient can consume by decreasing the size of the stomach. Examples of types of bariatric surgery that use this technique include the sleeve gastrectomy and gastric banding.

Subcutaneous fat

is the type of body fat located just beneath the skin and can be felt by pinching the skin.

Visceral fat

is the type of body fat located internally around the organs. As such, visceral fat is also called organ fat.


  1. 1.
    The World Health Organization. Overweight and obesity [Internet]. 2015 [cited 2017 Oct 8]. Available from:
  2. 2.
    Wang YC, McPherson K, Marsh T, Gortmaker SL, Brown M. Health and economic burden of the projected obesity trends in the USA and the UK. Lancet. 2011;378(9793):815–25.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Wilson PWF, D’Agostino RB, Sullivan L, Parise H, Kannel WB. Overweight and obesity as determinants of cardiovascular risk: the Framingham experience. Arch Intern Med. 2002;162(16):1867–72.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Christensen RAG, Raiber L, Macpherson AK, Kuk JL. The association between obesity and self-reported sinus infection in non-smoking adults: a cross-sectional study. Clin Obes. 2016;6(6):389–94.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Fontaine KR, Redden DT, Wang C, Westfall AO, Allison DB. Years of life lost due to obesity. JAMA. 2003;289(2):187–93.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Chang SH, Pollack LM, Colditz GA. Life years lost associated with obesity-related diseases for US non-smoking adults. PLoS One. 2013;8(6):e66550.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Tsai AG, Williamson DF, Glick HA. Direct medical cost of overweight and obesity in the USA: a quantitative systematic review. Obes Rev. 2011;12(1):50–61.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Kim DD, Basu A. Estimating the medical care costs of obesity in the United States: systematic review, meta-analysis, and empirical analysis. Value Health. 2016;19(5):602–13.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Peitz GW, Troyer J, Jones AE, Shapiro NI, Nelson RD, Hernandez J, et al. Association of body mass index with increased cost of care and length of stay for emergency department patients with chest pain and dyspnea. Circ Cardiovasc Qual Outcomes. 2014;7(2):292–8.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Cawley J, Rizzo JA, Haas K. Occupation-specific absenteeism costs associated with obesity and morbid obesity. J Occup Environ Med. 2007;49(12):1317–24.PubMedCrossRefGoogle Scholar
  11. 11.
    Conway B, Miller RG, Costacou T, Fried L, Kelsey S, Evans RW, et al. Temporal patterns in overweight and obesity in type 1 diabetes. Diabet Med. 2010;27(4):398–404.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Clement M, Harvey B, Rabi DM, Roscoe RS, Sherifali D. Canadian Diabetes Association 2013 clinical practice guidelines for the prevention and management of diabetes in Canada. Can J Diabetes [Internet]. 2013;37(Suppl 1):S20–5. Scholar
  13. 13.
    Goebel-Fabbri AE. Disturbed eating behaviors and eating disorders in type 1 diabetes: clinical significance and treatment recommendations. Curr Diab Rep. 2009;9(2):133–9.PubMedCrossRefGoogle Scholar
  14. 14.
    World Health Organization Expert Consultation. Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet. 2004;363(9403):157–63.CrossRefGoogle Scholar
  15. 15.
    Dixon JB, Zimmet P, Alberti KG, Rubino F. Bariatric surgery: an IDF statement for obese type 2 diabetes. Diabet Med. 2011;28(6):628–42.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Rubino F, Nathan DM, Eckel RH, Schauer PR, Alberti KGMM, Zimmet PZ, et al. Metabolic surgery in the treatment algorithm for type 2 diabetes: a joint statement by international diabetes organizations. Diabetes Care. 2016;39(6):861–77.PubMedCrossRefGoogle Scholar
  17. 17.
    Deurenberg P, Yap M, van Staveren WA. Body mass index and percent body fat: a meta analysis among different ethnic groups. Int J Obes Relat Metab Disord. 1998;22(12):1164–71.PubMedCrossRefGoogle Scholar
  18. 18.
    Dobbelsteyn CJ, Joffres MR, MacLean DR, Flowerdew G. A comparative evaluation of waist circumference, waist-to-hip ratio and body mass index as indicators of cardiovascular risk factors. The Canadian Heart Health Surveys. Int J Obes Relat Metab Disord. 2001;25(5):652–61.PubMedCrossRefGoogle Scholar
  19. 19.
    Zhang C, Rexrode KM, Van Dam RM, Li TY, Hu FB. Abdominal obesity and the risk of all-cause, cardiovascular, and cancer mortality: sixteen years of follow-up in US women. Circulation. 2008;117(13):1658–67.PubMedCrossRefGoogle Scholar
  20. 20.
    Wang Y, Rimm EB, Stampfer MJ, Willett WC, Hu FB. Comparison of abdominal adiposity and overall obesity in predicting risk of type 2 diabetes among men. Am J Clin Nutr. 2005;81(3):555–63.PubMedCrossRefGoogle Scholar
  21. 21.
    Janssen I, Katzmarzyk PT, Ross R. Body mass index, waist circumference, and health risk: evidence in support of current National Institutes of Health guidelines. Arch Intern Med. 2017;162(18):2074–9.CrossRefGoogle Scholar
  22. 22.
    National Institutes of Health. The practical guide. Identification, evaluation, and treatment of overweight and obesity in adults. NIH Publ Number 00-4084. 2000:26–7.
  23. 23.
    Carroll JF, Chiapa AL, Rodriquez M, Phelps DR, Cardarelli KM, Vishwanatha JK, et al. Visceral fat, waist circumference, and BMI: impact of race/ethnicity. Obesity (Silver Spring). 2008;16(3):600–7.CrossRefGoogle Scholar
  24. 24.
    Bodicoat DH, Gray LJ, Henson J, Webb D, Guru A, Misra A, et al. Body mass index and waist circumference cut-points in multi-ethnic populations from the UK and India : the ADDITION-Leicester, Jaipur heart watch and New Delhi cross-sectional studies. PLoS One. 2014;9(3):1–6.CrossRefGoogle Scholar
  25. 25.
    Lean ME, Han TS, Morrison CE. Waist circumference as a measure for indicating need for weight management. BMJ. 1995;311(6998):158–61.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Ardern CI, Janssen I, Ross R, Katzmarzyk PT. Development of health-related waist circumference thresholds within BMI categories. Obes Res. 2004;12(7):1094–103.PubMedCrossRefGoogle Scholar
  27. 27.
    World Health Organization. Waist circumference and waist-hip ratio: report of a WHO expert consultation. World Heal Organ. 2008;(December):8–11.
  28. 28.
    Molarius A, Seidell J. Selection of anthropometric indicators for classification of abdominal fatness--a critical review. Int J Obes Relat Metab Disord. 1998;22(8):719–27.PubMedCrossRefGoogle Scholar
  29. 29.
    Caan B, Armstrong MA, Selby JV, Sadler M, Folsom AR, Jacobs D, et al. Changes in measurements of body fat distribution accompanying weight change. Int J Obes Relat Metab Disord. 1994;18(6):397–404.PubMedGoogle Scholar
  30. 30.
    Taksali SE, Caprio S, Dziura J, Dufour S, Calı AMG, Goodman TR, et al. High visceral and low abdominal subcutaneous fat. Diabetes. 2008;57(2):367–71.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Wing RR, Jeffery RW, Burton LR, Thorson C, Kuller LH, Folsom AR. Change in waist-hip ratio with weight loss and its association with change in cardiovascular risk factors. Am J Clin Nutr. 1992;55(6):1086–92.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Matsuzawa Y, Shimomurn I, Nakumura T, Keno Y, Kotani K. Pathophysiology and pathogenesis of visceral fat obesity. Obes Res. 1995;3(Suppl 2):187S–94S.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Deurenberg-Yap M, Chew SK, Deurenberg P. Elevated body fat percentage and cardiovascular risks at low body mass index levels among Singaporean Chinese, Malays and Indians. Obes Rev. 2002;3(3):209–15.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Deurenberg P. Universal cut-off BMI points for obesity are not appropriate. Br J Nutr. 2001;85(2):135–6.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    World Health Organization (WHO). Obesity: preventing and managing the global epidemic. Report of a WHO consultation. World Health Organ Tech Rep Ser [Internet]. 2000;894:i–xii, 1–253. Available from:
  36. 36.
    Sloan A, Burt J, Blyth C. Estimation of body fat in young women. J Appl Physiol. 1962;17:967–70.CrossRefGoogle Scholar
  37. 37.
    Durnin JV, Womersley J. Body fat assessed from total body density and its estimation from skinfold thickness: measurements on 481 men and women aged from 16 to 72 years. Br J Nutr. 1974;32(1):77–97.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Slaughter MH, Lohman TG, Boileau RA, Horswill CA, Stillman RJ, Van Loan MD, et al. Skinfold equations for estimation of body fatness in children and youth. Hum Biol. 1988;60(5):709–23.Google Scholar
  39. 39.
    Jackson AS, Pollock ML, Ward A. Generalized equations for perdicting body density of women. Med Sci Sports Exerc. 1980;12(3):175–82.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Jackson AS, Pollock ML. Generalized equations for predicting body density of men. Br J Nutr. 1978;40(3):497–504.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Durnin JV, Rahaman MM. The assessment of the amount of fat in the human body from measurements of skinfold thickness. Br J Nutr. 1967;21(3):681–9.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Kushner RF. Bioelectrical impedance analysis: a review of principles and applications. J Am Coll Nutr. 1992;11(2):199–209.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Sun SS, Chumlea WC, Heymsfield SB, Lukaski HC, Schoeller D, Friedl K, et al. Development of bioelectrical impedance analysis prediction equations for body composition with the use of a multicomponent model for use in epidemiologic surveys 1–4. Am J Clin Nutr. 2003;77(22):331–40.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Roubenoff R, Kehayias JJ, Dawson Hughes B, Heymsfield SB. Use of dual-energy x-ray absorptiometry in body composition studies: not yet a gold standard. Am J Clin Nutr. 1993;58(5):589–91.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Bosy-Westphal A, Later W, Hitze B, Sato T, Kossel E, Glüer CC, et al. Accuracy of bioelectrical impedance consumer devices for measurement of body composition in comparison to whole body magnetic resonance imaging and dual X-ray absorptiometry. Obes Facts. 2008;1(6):319–24.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Wattanapenpaiboon N, Lukito W, Strauss BJ, Hsu-Hage BH, Wahlqvist ML, Stroud DB. Agreement of skinfold measurement and bioelectrical impedance analysis (BIA) methods with dual energy X-ray absorptiometry (DEXA) in estimating total body fat in Anglo-Celtic Australians. Int J Obes Relat Metab Disord. 1998;22(9):854–60.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Rothney MP, Brychta RJ, Schaefer EV, Chen KY, Monica C. Body composition measured by dual-energy X-ray absorptiometry half-body scans in obese adults. Obesity (Silver Spring). 2009;17(6):1281–6.Google Scholar
  48. 48.
    Chouinard LE, Schoeller DA, Watras AC, Clark RR, Close RN, Buchholz AC. Bioelectrical impedance vs. four-compartment model to assess body fat change in overweight adults. Obesity (Silver Spring). 2007;15(1):85–92.CrossRefGoogle Scholar
  49. 49.
    Lee SY, Gallagher D. Assessment methods in human body composition. Curr Opin Clin Nutr Metab Care. 2008;11(5):566–72.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Butland B, Jebb S, Kopelman P, McPherson K, Thomas S, Mardell J, et al. Foresight tackling obesities: future choices – project report. Gov Off Sci. 2007:1–161.,_Jebb_S,_Kopelman_P,_McPherson_K,_Thomas_S,_Mardell_J,_et_al_2007.
  51. 51.
    Rankinen T, Zuberi A, Chagnon YC, Weisnagel SJ, Argyropoulos G, Walts B, et al. The human obesity gene map: the 2005 update. Obesity. 2006;14(4):529–644.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Mergen M, Mergen H, Ozata M, Oner R, Oner C. A novel melanocortin 4 receptor (MC4R) gene mutation associated with morbid obesity. J Clin Endocrinol Metab. 2001;86(7):3448–51.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Cassidy SB, Schwartz S, Miller JL, Driscoll DJ. Prader-Willi syndrome. Genet Med. 2012;14(1):10–26.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Farooqi IS, O’Rahilly S. New advances in the genetics of early onset obesity. Int J Obes. 2005;29(10):1149–52.CrossRefGoogle Scholar
  55. 55.
    Farooqi IS, O’Rahilly S. Genetic factors in human obesity. Obes Rev. 2007;8(Suppl 1):37–40.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Reilly JJ, Armstrong J, Dorosty AR, Emmett PM, Ness A, Rogers I, et al. Early life risk factors for obesity in childhood: cohort study. BMJ. 2005;330(7504):1–7.CrossRefGoogle Scholar
  57. 57.
    Stunkard AJ, Harris JR, Pedersen NL, McClearn GE. The body-mass index of twins who have been reared apart. N Engl J Med. 1990;322(21):1483–7.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Price RA, Gottesman II. Body fat in identical twins reared apart: roles for genes and environment. Behav Genet. 1991;21(1):1–7.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Silventoinen K, Sans S, Tolonen H, Monterde D, Kuulasmaa K, Kesteloot H, et al. Trends in obesity and energy supply in the WHO MONICA project. Int J Obes Relat Metab Disord. 2004;28(5):710–8.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Brown RE, Sharma AM, Ardern CI, Mirdamadi P, Mirdamadi P, Kuk JL. Secular differences in the association between caloric intake, macronutrient intake, and physical activity with obesity. Obes Res Clin Pract. 2015;10(September):1–13.Google Scholar
  61. 61.
    Heitmann BL, Lissner L, Sorensen TIA, Bengtsson C. Dietary fat intake and weight gain in women genetically predisposed for obesity. Am J Clin Nutr. 1995;61(6):1213–7.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    World Health Organization. Guideline: sugars intake for adults and children. World Heal Organ -WHO. 2014;48:4.Google Scholar
  63. 63.
    Jeffery RW, Wing RR, Sherwood NE, Tate DF. Physical activity and weight loss: does prescribing higher physical activity goals improve outcome? Am J Clin Nutr. 2003;78(4):684–9.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Wing RR, Hill JO. Successful weight loss maintenance. Annu Rev Nutr. 2001;21:323–41.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Tudor-Locke C, Brashear MM, Johnson WD, Katzmarzyk PT. Accelerometer profiles of physical activity and inactivity in normal weight, overweight, and obese U.S. men and women. Int J Behav Nutr Phys Act. 2010;7:60.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Wyatt ID, Hecker DE. Occupational changes during the 20th century. Mon Labor Rev. 2006;129(3):35–57.Google Scholar
  67. 67.
    Frank LD, Sallis JF, Conway TL, Chapman JE, Saelens BE, Bachman W. Many pathways from land use to health: associations between neighborhood walkability and active transportation, body mass index, and air quality. J Am Plan Assoc. 2006;72(1):75–87.CrossRefGoogle Scholar
  68. 68.
    Ali O. Genetics of type 2 diabetes. World J Diabetes. 2013;4(4):114.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Astrup A, Finer N. Redefining type 2 diabetes: “diabesity” or “obesity dependent diabetes mellitus”? Obes Rev. 2000;1(2):57–9.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Juonala M, Magnussen CG, Berenson GS, Venn A, Burns TL, Sabin MA, et al. Childhood adiposity, adult adiposity, and cardiovascular risk factors. Obstet Gynecol Surv. 2012;67(3):156–8.CrossRefGoogle Scholar
  71. 71.
    Ferrannini E, Camastra S. Relationship between impaired glucose tolerance, non-insulin-dependent diabetes mellitus and obesity. Eur J Clin Invest. 1998;28(Suppl 2):3–6.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Mozaffarian D, Wilson PWF, Kannel WB. Beyond established and novel risk factors lifestyle risk factors for cardiovascular disease. Circulation. 2008;117(23):3031–8.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Al-Quwaidhi A, Critchley J, O’Flaherty M, Pearce M. Obesity and type 2 diabetes mellitus: a complex association. Saudi J Obes. 2013;1(2):49.CrossRefGoogle Scholar
  74. 74.
    Murray CJL, Atkinson C, Bhalla K, Birbeck G, Burstein R, Chou D, et al. The state of US health, 1990–2010: burden of diseases, injuries, and risk factors. JAMA. 2013;310(6):591–608.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Mozaffarian D. Foods, obesity, and diabetes-are all calories created equal? Nutr Rev. 2017;75:19–31.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya K, Adair-Rohani H, et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the global burden of disease study 2010. Lancet. 2012;380(9859):2224–60.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Lazar MA. How obesity causes diabetes: not a tall tale. Science. 2005;307(5708):373–5.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Ahima RS. Revisiting leptin’s role in obesity and weight loss. J Clin Invest [Internet]. 2008;118(7):2380–3. Available from:, Scholar
  79. 79.
    Wing RR, Lang W, Wadden TA, Safford M, Knowler WC, Bertoni AG, et al. Benefits of modest weight loss in improving cardiovascular risk factors in overweight and obese individuals with type 2 diabetes. Diabetes Care. 2011;34(7):1481–6.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Vittal BG, Praveen G, Deepak P. A study of body mass index in healthy individuals and its relationship with fasting blood sugar. J Clin Diagnostic Res [Internet]. 2010 [cited 2017 Sep 7];4(6):3421–4. Available from:
  81. 81.
    Innocent O, ThankGod OO, Sandra EO, Josiah IE. Correlation between body mass index and blood glucose levels among some Nigerian undergraduates. HOAJ Biol. 2013;2(1):4.CrossRefGoogle Scholar
  82. 82.
    Magkos F, Nikonova E, Fain R, Zhou S, Ma T, Shanahan W. Effect of lorcaserin on glycemic parameters in patients with type 2 diabetes mellitus. Obesity. 2017;25(5):842–9.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Mottalib A, Sakr M, Shehabeldin M, Hamdy O. Diabetes remission after nonsurgical intensive lifestyle intervention in obese patients with type 2 diabetes. J Diabetes Res. 2015;2015(2015):4.Google Scholar
  84. 84.
    Buchwald H, Estok R, Fahrbach K, Banel D, Jensen MD, Pories WJ, et al. Weight and type 2 diabetes after bariatric surgery: systematic review and meta-analysis. Am J Med. 2009;122(3):248–256.e5.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Garvey WT, Ryan DH, Bohannon NJV, Kushner RF, Rueger M, Dvorak RV, et al. Weight-loss therapy in type 2 diabetes: effects of phentermine and topiramate extended release. Diabetes Care. 2014;37(12):3309–16.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Hollander P, Gupta AK, Plodkowski R, Greenway F, Bays H, Burns C, et al. Effects of naltrexone sustained- release/bupropion sustained-release combination therapy on body weight and glycemic parameters in overweight and obese patients with type 2 diabetes. Diabetes Care. 2013;36(12):4022–9.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Dakour Aridi HN, Wehbe M-R, Shamseddine G, Alami RS, Safadi BY. Long-term outcomes of roux-en-Y gastric bypass conversion of failed laparoscopic gastric band. Obes Surg. 2017;27(6):1401–8.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Curioni CC, Lourenço PM. Long-term weight loss after diet and exercise: a systematic review. Int J Obes. 2005;29(10):1168–74.CrossRefGoogle Scholar
  89. 89.
    Johns DJ, Hartmann-Boyce J, Jebb SA, Aveyard P. Diet or exercise interventions vs combined behavioral weight management programs: a systematic review and meta-analysis of directcom parisons. J Acad Nutr Diet. 2014;114(10):1557–68.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Miller WC, Koceja DM, Hamilton EJ. A meta-analysis of the past 25 years of weight loss research using diet, exercise or diet plus exercise intervention. Int J Obes. 1997;21(10):941–7.CrossRefGoogle Scholar
  91. 91.
    Knowler WC, Barrett-Connor E, Fowler SE, Hamman RF, Lachin JM, Walker EA, et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002;346(6):393–403.PubMedCrossRefGoogle Scholar
  92. 92.
    Lindstrom J, Louheranta A, Mannelin M, Rastas M, Salminen V, Eriksson J, et al. The Finnish Diabetes Prevention Study (DPS). Diabetes Care. 2003;26(12):3230–6.PubMedCrossRefGoogle Scholar
  93. 93.
    Look AHEAD Research Group LAR, Pi-Sunyer X, Blackburn G, Brancati FL, Bray GA, Bright R, et al. Reduction in weight and cardiovascular disease risk factors in individuals with type 2 diabetes: one-year results of the look AHEAD trial. Diabetes Care. 2007;30(6):1374–83.CrossRefGoogle Scholar
  94. 94.
    Look AHEAD Research Group, Wing RR. Long-term effects of a lifestyle intervention on weight and cardiovascular risk factors in individuals with type 2 diabetes mellitus: four-year results of the Look AHEAD trial. Arch Intern Med. 2010;170(17):1566–75.Google Scholar
  95. 95.
    Nordmann AJ, Nordmann A, Briel M, Keller U, Yancy WS Jr, Brehm BJ, et al. Effects of low-carbohydrate vs low-fat diets on weight loss and cardiovascular risk factors: a meta-analysis of randomized controlled trials. Arch Intern Med. 2006;166(3):285–93.PubMedCrossRefGoogle Scholar
  96. 96.
    Tobias DK, Chen M, Manson JAE, Ludwig DS, Willett W, Hu FB. Effect of low-fat diet interventions versus other diet interventions on long-term weight change in adults: a systematic review and meta-analysis. Lancet Diabetes Endocrinol. 2015;3(12):968–79.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Hu T, Mills KT, Yao L, Demanelis K, Eloustaz M, Yancy WS, et al. Effects of low-carbohydrate diets versus low-fat diets on metabolic risk factors: a meta-analysis of randomized controlled clinical trials. Am J Epidemiol. 2012;176:S44–54.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Davidson LE, Hudson R, Kilpatrick K, Kuk JL, McMillan K, Janiszewski PM, et al. Effects of exercise modality on insulin resistance and functional limitation in older adults: a randomized controlled trial. Arch Intern Med. American Medical Association. 2009;169(2):122–31.PubMedCrossRefGoogle Scholar
  99. 99.
    Colberg SR, Sigal RJ, Fernhall B, Regensteiner JG, Blissmer BJ, Rubin RR, et al. Exercise and type 2 diabetes: the American College of Sports Medicine and the American Diabetes Association: joint position statement. Diabetes Care. 2010;33:2692.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Arciero PJ, Gentile CL, Martin-Pressman R, Ormsbee MJ, Everett M, Zwicky L, et al. Increased dietary protein and combined high intensity aerobic and resistance exercise improves body fat distribution and cardiovascular risk factors. Int J Sport Nutr Exerc Metab. 2006;16(4):373–92.PubMedCrossRefGoogle Scholar
  101. 101.
    Donnelly JE, Blair SN, Jakicic JM, Manore MM, Rankin JW, Smith BK. Appropriate physical activity intervention strategies for weight loss and prevention of weight regain for adults. Med Sci Sports Exerc. 2009;41(2):459–71.PubMedCrossRefGoogle Scholar
  102. 102.
    Brownell KD, Jeffery RW. Improving long-term weight loss: pushing the limits of treatment. Behav Ther. 1987;18(4):353–74.CrossRefGoogle Scholar
  103. 103.
    Jeffery RW, Drewnowski A, Epstein LH, Stunkard AJ, Wilson GT, Wing RR, et al. Long-term maintenance of weight loss: current status. Health Psychol. 2000;19(1S):5–16.PubMedCrossRefGoogle Scholar
  104. 104.
    Jacob AN, Salinas K, Adams-Huet B, Raskin P. Weight gain in type 2 diabetes mellitus. Diabetes Obes Metab. 2007;9(3):386–93.PubMedCrossRefGoogle Scholar
  105. 105.
    Kroeger CM, Hoddy KK, Varady KA. Impact of weight regain on metabolic disease risk: a review of human trials. J Obes. 2014;2014(2014):8.Google Scholar
  106. 106.
    Beavers KM, Case LD, Blackwell CS, Katula JA, Goff DC, Vitolins MZ, et al. Effects of weight regain following intentional weight loss on glucoregulatory function in overweight and obese adults with pre-diabetes. Obes Res Clin Pract. 2015;9(3):266–73.PubMedCrossRefGoogle Scholar
  107. 107.
    Apovian CM, Aronne LJ, Bessesen DH, McDonnell ME, Murad MH, Pagotto U, et al. Pharmacological management of obesity: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2015;100(2):342–62.PubMedCrossRefGoogle Scholar
  108. 108.
    Padwal R, Li SK, Lau DCW. Long-term pharmacotherapy for overweight and obesity: a systematic review and meta-analysis of randomized controlled trials. Int J Obes Relat Metab Disord. 2003;27:1437–46.PubMedCrossRefGoogle Scholar
  109. 109.
    Astrup A, Carraro R, Finer N, Harper A, Kunesova M, Lean MEJ, et al. Safety, tolerability and sustained weight loss over 2 years with the once-daily human GLP-1 analog, liraglutide. Int J Obes. 2012;36(6):843–54.CrossRefGoogle Scholar
  110. 110.
    Pi-Sunyer X, Astrup A, Fujioka K, Greenway F, Halpern A, Krempf M, et al. A randomized, controlled trial of 3.0 mg of liraglutide in weight management. N Engl J Med. Massachusetts Medical Society. 2015;373(1):11–22.PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Rucker D, Padwal R, Li SK, Curioni C, Lau DCW. Long term pharmacotherapy for obesity and overweight: updated meta-analysis. BMJ. 2007;335(7631):1194–9.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Vray M, Joubert J-M, Eschwège E, Liard F, Fagnani F, Montestruc F, et al. Results from the observational study EPIGRAM: management of excess weight in general practice and follow-up of patients treated with orlistat. Therapie. 2005;60(1):17–24.PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Hollander PA, Elbein SC, Hirsch IB, Kelley D, McGill J, Taylor T, et al. Role of orlistat in the treatment of obese patients with type 2 diabetes: a 1-year randomized double-blind study. Diabetes Care. 1998;21(8):1288–94.PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Davies MJ, Bergenstal R, Bode B, Kushner RF, Lewin A, Skjoth TV, et al. Efficacy of liraglutide for weight loss among patients with type 2 diabetes: the SCALE diabetes randomized clinical trial. JAMA. 2015;314(7):687–99.PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Hermansen K, Mortensen LS. Bodyweight changes associated with antihyperglycemic agents in type 2 diabetes mellitus. Drug Saf. 2007;30(12):1127–42.PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Van Gaal L, Scheen A. Weight management in type 2 diabetes : current and emerging approaches to treatment. Diabetes Care. 2015;38(6):1161–72.PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    American Society for Metabolic and Bariatric Surgery. Story of obesity surgery [Internet]. 2004 [cited 2017 Mar 27]. Available from:
  118. 118.
    Garb J, Welch G, Zagarins S, Kuhn J, Romanelli J. Bariatric surgery for the treatment of morbid obesity: a meta-analysis of weight loss outcomes for laparoscopic adjustable gastric banding and laparoscopic gastric bypass. Obes Surg. 2009;19(10):1447–55.PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Hutter MM, Schirmer BD, Jones DB, Ko CY, Cohen ME, Merkow RP, et al. First report from the American College of Surgeons Bariatric Surgery Center Network: laparoscopic sleeve gastrectomy has morbidity and effectiveness positioned between the band and the bypass. Ann Surg. 2011;254(3):410–22.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Angrisani L, Santonicola A, Iovino P, Vitiello A, Zundel N, Buchwald H, et al. Bariatric surgery and endoluminal procedures: IFSO worldwide survey 2014. Obes Surg. 2017;27(9):2279–89.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Buchwald H, Williams SE. Bariatric surgery worldwide 2003. Obes Surg. 2004;14(9):1157–64.PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Flint RS, Coulter G, Roberts R. The pattern of adjustments after laparoscopic adjustable gastric band. Obes Surg. 2015;25(11):2061–5.PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Buchwald H, Avidor Y, Braunwald E, Jensen MD, Proies W, Fahrbach KSK. Bariatric surgery: a systematic review and meta-analysis. JAMA. 2004;292(14):1724–7.PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Karamanakos SN, Vagenas K, Kalfarentzos F, Alexandrides TK. Weight loss, appetite suppression, and changes in fasting and postprandial ghrelin and peptide-YY levels after roux-en-Y gastric bypass and sleeve gastrectomy. Ann Surg. 2008;247(3):401–7.PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    MacDonald KG, Long SD, Swanson MS, Brown BM, Morris P, Dohm GL, et al. The gastric bypass operation reduces the progression and mortality of non-insulin-dependent diabetes mellitus. J Gastrointest Surg. 1996;1(3):213–20.CrossRefGoogle Scholar
  126. 126.
    Flum DR, Dellinger EP. Impact of gastric bypass operation on survival: a population-based analysis. J Am Coll Surg. 2004;199(4):543–51.PubMedCrossRefPubMedCentralGoogle Scholar
  127. 127.
    Christou NV, Sampalis JS, Liberman M, Look D, Auger S, McLean APH, et al. Surgery decreases long-term mortality, morbidity, and health care use in morbidly obese patients. Ann Surg. 2004;240(3):416–24.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    DeMaria EJ, Sugerman HJ, Meador JG, Doty JM, Kellum JM, Wolfe L, et al. High failure rate after laparoscopic adjustable silicone gastric banding for treatment of morbid obesity. Ann Surg. 2001;233(6):809–18.PubMedPubMedCentralCrossRefGoogle Scholar

Suggested/Further Reading

  1. Astrup A, Finer N. Redefining type 2 diabetes: “diabesity” or “obesity dependent diabetes mellitus”? Obes Rev. 2000;1(2):57–9. Explores the relationship between obesity and T2D.PubMedCrossRefPubMedCentralGoogle Scholar
  2. Butland B, Jebb S, Kopelman P, McPherson K, Thomas S, Mardell J, et al. Foresight tackling obesities: future choices – project report. Gov Off Sci. 2007;1–161. Section 5 includes an in-depth discussion of the development and treatment of obesity according to the spaghetti map.Google Scholar
  3. Sharma AM, Kushner RF. A proposed clinical staging system for obesity. Int J Obes. 2009;33(3):289–95. Seminal text on the Edmonton Obesity Staging System (EOSS) to evaluate the morbidity and mortality associated with excess weight.CrossRefGoogle Scholar
  4. Wharton S, Serodio KJ. Next generation of weight management medications: implications for diabetes and CVD risk. Curr Cardiol Rep. 2015;17(5):35. Discusses the mechanism of action for weight management medications, and their use in the context of diabetes.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Wharton S, Sharma A, Lau D. Canadian Diabetes Association 2013 clinical practice guidelines for the prevention and management of diabetes in Canada: weight management in diabetes. Can J Diabetes. 2013;37(Suppl 1):S61–8. Provides a more in-depth discussion of weight management options for patients with diabetes, including graphical representations of common bariatric procedures.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Sean Wharton
    • 1
    • 2
  • Christy Costanian
    • 2
  • Talia Gershon
    • 1
  • Rebecca A. G. Christensen
    • 1
  1. 1.The Wharton Medical ClinicHamiltonCanada
  2. 2.York University, School of Kinesiology and Health ScienceTorontoCanada

Personalised recommendations