Advertisement

Preface: A New Disease?

  • Joel Rodriguez-Saldana
Chapter

Abstract

At the Scientific Sessions of the American Diabetes Association in 1992, Professor Gian Franco Bottazzo delivered the Banting Lecture, in which he announced that diabetes was “a new disease,” based on criteria originally described by Mirko D. Grmek in his classical book about the history of AIDS:

References

  1. 1.
    Botazzo GC. Banting lecture. On the honey disease. A dialogue with Socrates. Diabetes. 1993;42:778–800.CrossRefGoogle Scholar
  2. 2.
    Grmek MD. History of AIDS: emergence and origin of a new pandemic. Princeton: Princeton University Press; 1990.Google Scholar
  3. 3.
    Lasker SP, McLachlan CS, Wang L, Jelinek HF. Discovery, treatment and management of diabetes. Journal of Diabetology. 2010;1:1–8.CrossRefGoogle Scholar
  4. 4.
    Farmer L. Notes on the history of diabetes mellitus. Views concerning its nature and etiology up to the discovery of the role of the pancreas. Bull NY Acad Med. 1952;28:408–16.Google Scholar
  5. 5.
    Eknoyan G, Nagy J. A history of diabetes mellitus and how a disease of the kidneys evolved into a kidney disease. Adv Chronic Kidney Dis. 2005;12:223–9.CrossRefGoogle Scholar
  6. 6.
    Polonsky KS. The past 200 years in diabetes. N Engl J Med. 2012;367:1332–40.CrossRefGoogle Scholar
  7. 7.
    DCCT Research Group. The effect of intensive diabetes treatment on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 1993;329:978–86.Google Scholar
  8. 8.
    UK Prospective Diabetes Study Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet. 1998;352:837–53.CrossRefGoogle Scholar
  9. 9.
    UK Prospective Diabetes Study Group. Tight blood pressure control and risk of macrovascular and microvascular complications in type diabetes: UKPDS 38. Br Med J. 1998;317:703–13.CrossRefGoogle Scholar
  10. 10.
    Bebu I, Braffett BH, Pop-Busui R, Orchard TJ, Nathan DM, Lachin JM, et al. The relationship of blood glucose with cardiovascular disease in mediated over time by traditional risk factors in type 1 diabetes: the DCCT/EDIC study. Diabetologia. 2017;60:2084–91.CrossRefGoogle Scholar
  11. 11.
    Edelman SV, Polonsky WH. Type 2 diabetes in the real world: the elusive nature of glycemic control. Diabetes Care. 2017;40:1425–32.CrossRefGoogle Scholar
  12. 12.
    Zimmet PZ. Diabetes and its drivers: the largest epidemic in human history? Clinical Diabetes and Endocrinology. 2017;3:1.  https://doi.org/10.1186/s40842-016-0039-3.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    West KM. Epidemiology of diabetes and its vascular lesions. New York NY: Elsevier; 1978.Google Scholar
  14. 14.
    Joslin EP, Root HF, Bailey C. Diabetes Mellitus. N Engl J Med. 1941;225:410–7.CrossRefGoogle Scholar
  15. 15.
    Blotner H, Marble A. Diabetes control: detection, public education and community aspects. N Engl J Med. 1951;245:567–75.CrossRefGoogle Scholar
  16. 16.
    Marks HH. Statistics in diabetes. N Engl J Med. 1946;235:289–94.CrossRefGoogle Scholar
  17. 17.
    Roglic G, Unwin N. Mortality attributable to diabetes: estimates for the year 2010. Diabetes Res Clin Pract. 2010;87:15–9.CrossRefGoogle Scholar
  18. 18.
    Instituto Nacional de Estadística, Geografía e Informática. Estadísticas Históricas de México, Tomo I. Aguascalientes Ags: INEGI; 1985.Google Scholar
  19. 19.
    Secretaría de Salud. Salud en Números. Accessed on 29 Mar 2018 at http://www.dgis.salud.gob.mx/contenidos/sinais/s_index.html.
  20. 20.
    Röckl S, Brinks R, Baumert J, Paprott R, Du Y, Heidemann C, Scheidt-Nave C. All-cause mortality in adults with and without type 2 diabetes: findings from the national health monitoring in Germany. BMJ Open Diab Res Care. 2017;5:e000451.  https://doi.org/10.1136/bmjdrc-2017-000451.CrossRefPubMedGoogle Scholar
  21. 21.
    Cho NH, Shaw JE, Karuranga S, Huang Y, da Rocha Fernandes JD, Ohlrogge AW, et al. IDF diabetes atlas: global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract. 2018;138:271–81.CrossRefGoogle Scholar
  22. 22.
    O’Sullivan JB, Wilkerson HLC, Krall LP. The prevalence of diabetes mellitus in Oxford and related epidemiologic problems. Am J Public Health Nations Health. 1966;56:742–54.CrossRefGoogle Scholar
  23. 23.
    Wilkerson HLC, Krall LP. Diabetes in a New England Town. A study of 3,516 persons in Oxford Mass. JAMA. 1947;135:209–16.CrossRefGoogle Scholar
  24. 24.
    Jarrett RJ. Lessons in the epidemiology of diabetes. BMJ. 1970;3:270–17.CrossRefGoogle Scholar
  25. 25.
    NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4.4 million participants. Lancet. 2016;387:1513–30.CrossRefGoogle Scholar
  26. 26.
    Bommer C, Heesemann E, Sagalova V, Manne-Goehler J, Atun R, Bäminghausen T, et al. The global economic durden of diabetes in adults aged 20-79 years: a cost-of-illness study. Lancet Diabetes Endocrinol. 2017;5:423–30.CrossRefGoogle Scholar
  27. 27.
    Zuo H, Shi Z, Hussain A. Prevalence, trends and risk factors for the diabetes epidemic in China: a systematic review and meta-analysis. Diabetes Res Clin Pract. 2014;104:63–72.CrossRefGoogle Scholar
  28. 28.
    Wang L, Gao P, Zhang M, Huang Z, Zhang D, Deng Q, et al. Prevalence and ethnic patterns of diabetes and prediabetes in China in 2013. JAMA. 2017;317:2515–23.CrossRefGoogle Scholar
  29. 29.
    Klonoff DC. The increasing incidence of diabetes in the 21st century. J Diabetes Sci Technol. 2009;3:1–2.CrossRefGoogle Scholar
  30. 30.
    Ingelfinger JR, Jarcho JA. Increase in the incidence of diabetes and its implications. N Engl J Med. 2017;376:1473–4.CrossRefGoogle Scholar
  31. 31.
    Geiss LS, Wang J, Cheng YJ, Thompson TJ, Barker L, Li Y, et al. Prevalence and incidence trends for diagnosed diabetes among adults aged 20 to 79 years, United States, 1980–2012. JAMA. 2014;312:1218–26.CrossRefGoogle Scholar
  32. 32.
    Bullard KM, Cowie CC, Lessem SE, Saydah SH, Menke A, Geiss LS, et al. Prevalence of diagnosed diabetes in adults by diabetes type – United States, 2016. MMWR. 2018;67:359–61.PubMedGoogle Scholar
  33. 33.
    Mayer-Davis EJ, Lawrence JM, Dabelea D, Divers J, Isom S, Dolan L, et al. Incidence trends of type 1 and type 2 diabetes among youths, 2002–2012. N Engl J Med. 2017;376:1419–29.CrossRefGoogle Scholar
  34. 34.
    Amutha A, Mohan Anjana R, Venkatesan U, Ranjani H, Unnikrishnan R, Km VN, et al. Incidence of complications in young-onset diabetes: comparing type 2 with type 1 (the young diab study). Diabetes Res Clin Pract. 2017;123:1–8.CrossRefGoogle Scholar
  35. 35.
    Venkat Narayan KM. Type 2 diabetes: why we are winning the Battle but losing the war. 2015 Kelly West Award Lecture. Diabetes Care. 2016;39:653–63.CrossRefGoogle Scholar
  36. 36.
    Meza R, Barrientos-Gutierrez T, Rojas-Martinez R, Reynoso-Noverón N, Palacio-Mejia LS, Lazcano-Ponce E, et al. Burden of type 2 diabetes in Mexico: past, current and future prevalence and incidence rates. Prev Med. 2015;81:445–50.CrossRefGoogle Scholar
  37. 37.
    Skyler JS, Bakris GL, Bonifacio E, Darsow T, Eckel RH, Groop L, et al. Differentiation of diabetes by pathophysiology, natural history, and prognosis. Diabetes. 2017;66:241–55.CrossRefGoogle Scholar
  38. 38.
    Fall C, Osmond C. Commentary: the developmental origins of health and disease: an appreciation of the life and work of Professor David J.P. Barker, 1938-2013. Int J Epidemiol. 2013;42:1231–2.CrossRefGoogle Scholar
  39. 39.
    Hales CN, Barker DJP, Clark PMS, Cox LJ, Fall C, Osmond C, Winter PD. Fetal and infant growth and impaired glucose tolerance at age 64. BMJ. 1991;303:1019–22.CrossRefGoogle Scholar
  40. 40.
    Hales CN, Barker DJP. Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis. Diabetologia. 1992;35:595–601.CrossRefGoogle Scholar
  41. 41.
    Slomko H, Heo HJ, Einstein FH. Epigenetics of obesity and diabetes in humans. Endocrinology. 2012;153:1025–30.CrossRefGoogle Scholar
  42. 42.
    Jerram ST, Dang MN, Leslie RD. The role of epigenetics in type 1 diabetes. Curr Diab Rep. 2017;17:89.  https://doi.org/10.1007/s11892-017-0916-x.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Feinberg AP. The key role of epigenetics in human disease prevention and mitigation. N Engl J Med. 2018;378:1323–34.CrossRefGoogle Scholar
  44. 44.
    Nichols MS, de Silva-Sanigorski AM, Cleary JE, Goldfeld SR, Colahan A, Swinburn BA. Decreasing trends in overweight and obesity among an Australian population of preschool children. Int J Obes. 2011;35:916–24.CrossRefGoogle Scholar
  45. 45.
    Pan L, Park S, Slayton R, Goodman AB, Blanck HM. Trends in severe obesity among children aged 2 to 4 years enrolled in special supplemental nutrition program for women, infants, and children from 2000 to 2014. JAMA Pediatr. 2018;172:232–8.CrossRefGoogle Scholar
  46. 46.
    NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128.9 million children, adolescents, and adults. Lancet. 2017;390:2627–42.CrossRefGoogle Scholar
  47. 47.
    NCD Risk Factor Collaboration (NCD-RisC). Trends in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19.2 million participants. Lancet. 2016;387:1377–96.CrossRefGoogle Scholar
  48. 48.
    Islam ST, Srinivasan S, Craig ME. Environmental determinants of type 1 diabetes: a role for overweight and insulin resistance. J Pediatr Child Health. 2014;50:874–9.CrossRefGoogle Scholar
  49. 49.
    Verbeeten KC, Elks CE, Daneman D, Ong KK. Association between childhood obesity and subsequent type 1 diabetes: a systematic review and meta-analysis. Diabet Med. 2011;28:10–8.CrossRefGoogle Scholar
  50. 50.
    Davey-Smith G. A fatter, healthier but more unequal world. Lancet. 2017;387:1349–50.CrossRefGoogle Scholar
  51. 51.
    Singer M, Bulled N, Ostrach B, Mendenhall E. Syndemics and the biosocial conception of health. Lancet. 2017;389:941–50.CrossRefGoogle Scholar
  52. 52.
    Tsai AC, Mendenhall E, Trastle JA, Kawachi I. Co-occurring epidemics, syndemics, and population health. Lancet. 2017;389:978–82.CrossRefGoogle Scholar
  53. 53.
    Mendenhall E, Kohrt BA, Norris SA, Ndetei D, Prabhkaran D. Non-communicable disease syndemics: poverty, depression, and diabetes among low-income populations. Lancet. 2017;389:951–63.CrossRefGoogle Scholar
  54. 54.
    Chrisakis NA, Fowler JH. The spread of obesity in a large social network over 32 years. N Engl J Med. 2007;357:370–9.CrossRefGoogle Scholar
  55. 55.
    Barabási AL. Network Medicine – from obesity to the “Diseasome”. N Engl J Med. 2007;357:404–7.CrossRefGoogle Scholar
  56. 56.
    Huang H, Yan Z, Chen Y, Liu F. A social contagious model of the obesity epidemic. Sci Rep. 2016;6:37961.CrossRefGoogle Scholar
  57. 57.
    Demmer RT, Barondness JA. On the communicability of chronic diseases. Ann Intern Med. 2018;168(1):69–70.  https://doi.org/10.7326/M17-1734.CrossRefPubMedGoogle Scholar
  58. 58.
    Zung A, Naámnih W, Bluednikov Y, Mery N, Blumenfeld O. The proportion of familial cases of type 1 diabetes is increasing simultaneously with the disease incidence: eighteen years of the Israeli Pediatric Diabetes Registry. Pediatr Diabetes. 2018;19(4):693–8.CrossRefGoogle Scholar
  59. 59.
    Hart JT. The inverse care law. Lancet. 1971;1:405–12.CrossRefGoogle Scholar
  60. 60.
    Clarke ABM, Daneman D, Curtis JR, Mahmud FH. Impact of neighborhood-level inequity on paediatric diabetes care. Diabet Med. 2017;34:794–9.CrossRefGoogle Scholar
  61. 61.
    Seligman HK, Bindman AB, Vittinghoff E, Kanaya AM, Kushel MB. Food insecurity is associated with diabetes mellitus: results from the National Health Examination Survey (NHANES) 1999–2002. J Gen Intern Med. 2007;22:1018–23.CrossRefGoogle Scholar
  62. 62.
    Mendoza JA, Haaland W, D’Agostino RB, Martini L, Pihoker C, Frongillo EA, et al. Food insecurity is associated with high risk glycemic control and higher health care utilization among youth and youth adults with type 1 diabetes. Diabetes Res Clin Pract. 2018;138:128–37.CrossRefGoogle Scholar
  63. 63.
    Berwowitz SA, Karter AJ, Corbie-Smith G, Seligman HK, Ackroyd SA, Barnard LS, et al. Food insecurity, food “deserts” and Glycemic control in patients with diabetes: a longitudinal analysis. Diabetes Care. 2018;41(6):1188–95.CrossRefGoogle Scholar
  64. 64.
    Daneman D. State of the world’s children with diabetes. Pediatr Diabetes. 2009;10:120–6.CrossRefGoogle Scholar
  65. 65.
    Taylor DC. The components of sickness: diseases, illnesses and predicaments. Lancet. 1979;2:1008–10.CrossRefGoogle Scholar
  66. 66.
    Anderson RM, Genthner RW, Alogna M. Diabetes patient education: from philosophy to delivery. Diabetes Educ. 1982;8:33–6.CrossRefGoogle Scholar
  67. 67.
    Tinetti ME. The end of the disease era. Am J Med. 2004;116:179–85.CrossRefGoogle Scholar
  68. 68.
  69. 69.
    Greene JA, Loscalzo J. Putting the patient Back together – social medicine, network medicine, and the limits of reductionism. N Engl J Med. 2017;377:2493–9.CrossRefGoogle Scholar
  70. 70.
    Zinman B, Skyler JS, Riddle MC, Ferrannini E. Diabetes research and care through the ages. Diabetes Care. 2017;40:1302–13.CrossRefGoogle Scholar
  71. 71.
    Ali MK, McKeever Bullard K, Saadine JB, Cowie CC, IMperatore G, Gregg EW. Achievement of goals in U.S. diabetes care, 1999-2010. N Engl J Med. 2013;368:1613–24.CrossRefGoogle Scholar
  72. 72.
    Gregg EW, Li Y, Wang J, Burrows NR, Ali MK, Rolka D, Williams DE, et al. Changes in diabetes-related complications in the United States, 1990–2010. N Engl J Med. 2014;370:1514–23.Google Scholar
  73. 73.
    Alegre-Díaz J, Herrington W, López-Cervantes M, Gnatiuc L, Ramírez R, Hill M, et al. Diabetes and cause-specific mortality in Mexico City. N Engl J Med. 2016;375:1961–71.CrossRefGoogle Scholar
  74. 74.
    Kahn SE, Buse JB. Medications for type 2 diabetes: how will we be treating patients in 50 years? Diabetologia. 2015;58:1735–9.CrossRefGoogle Scholar
  75. 75.
    Ahrén B. Creative use of novel glucose-lowering drugs for type 2 diabetes: where will we head in the next 50 years? Diabetologia. 2015;58:1740–4.CrossRefGoogle Scholar
  76. 76.
    Meier JJ, Nauck MA. Incretin-based therapies: where will we be 50 years from now? Diabetologia. 2015;58:1745–50.CrossRefGoogle Scholar
  77. 77.
    Ali MK, McKeever Bullard K, Gregg EW, del Rio C. A Cascade of Care for Diabetes in the United States: visualizing the gaps. Ann Intern Med. 2014;161:681–9.CrossRefGoogle Scholar
  78. 78.
    Vinicor F. The future of diabetes: what is there besides new medicines? Clin Diabetes. 2004;22:94–6.CrossRefGoogle Scholar

Suggested Reading

  1. Bliss M. The Discovery of Insulin. 25th Anniversary Edition. Chicago: The University of Chicago Press; 2007.Google Scholar
  2. Galmer A. Biographies of disease. Diabetes. Westport: Greenwood Press; 2008.Google Scholar
  3. Hurley D. Diabetes rising. How a rare disease became a modern pandemic, and what to to about it. New York: Kaplan Publishing; 2010.Google Scholar
  4. Krieger N. Embodying inequality: epidemiologic perspectives. Amityville: Baywood Publishing Company; 2016.CrossRefGoogle Scholar
  5. Mendenhall E. Syndemic suffering. Social distress, depression and diabetes among Mexican immigrant women. New York: Taylor and Francis; 2012.Google Scholar
  6. Tattersall R. Diabetes. The biography. New York: Oxford University Press; 2009.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Joel Rodriguez-Saldana
    • 1
  1. 1.Multidisciplinary Centre of DiabetesMexico CityMexico

Personalised recommendations