Advertisement

Modified RAND Framework for Phase Split Calculations

  • Duncan PatersonEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

The classical example of the phase equilibrium problem is isothermal flash, with the temperature, pressure and molar feed specified. This is at the heart of many processes and reservoir simulation tools. The conventional approach to solve the isothermal flash problem involves alternating use of stability analysis (Baker et al. 1982) and phase split calculation, as described in Sect.  1.3. Stability analysis based on the tangent plane distance criterion can in principle be used to determine if the current state is a global minimum in the Gibbs energy. The method proposed by Michelsen (1982a) and its variants are widely used for stability analysis in practical calculations. The problem is essentially a global search over all possible trial compositions, and one can resort to global optimisation methods (McDonald and Floudas 1995; Hua et al. 1996). Such methods are generally too expensive to use for multicomponent systems. The phase split calculation solves the equilibrium equations given a number of phases, the solution to the problem corresponds to the local minimum in the Gibbs energy (Michelsen 1982b). If there is no advance knowledge about the maximum number of phases in a system, it is necessary to check the local minimum from the phase split calculation with stability analysis to ensure the Gibbs energy cannot be reduced further by the introduction of a new phase.

References

  1. Baker LE, Pierce AC, Luks KD (1982) Gibbs energy analysis of phase equilibria. Soc Pet Eng J 22(5):731–742.  https://doi.org/10.2118/9806-PA, ISSN: 0197-7520CrossRefGoogle Scholar
  2. Bonilla-Petriciolet A, Segovia-Hernández JG (2010) A comparative study of particle swarm optimization and its variants for phase stability and equilibrium calculations in multicomponent reactive and non-reactive systems. Fluid Phase Equilibria 289(2):110–121.  https://doi.org/10.1016/j.fluid.2009.11.008, http://linkinghub.elsevier.com/retrieve/pii/S037838120900452X, ISSN: 03783812CrossRefGoogle Scholar
  3. Bonilla-Petriciolet A, Rangaiah GP, Segovia-Hernández JG (2011) Constrained and unconstrained Gibbs free energy minimization in reactive systems using genetic algorithm and differential evolution with tabu list. Fluid Phase Equilibria 300(1–2):120–134.  https://doi.org/10.1016/j.fluid.2010.10.024, http://linkinghub.elsevier.com/retrieve/pii/S0378381210005467, ISSN: 03783812CrossRefGoogle Scholar
  4. Brantferger KM, Pope GA, Sepehrnoori K (1991) Development of a thermodynamically consistent, fully implicit, equation-of-state, compositional steamflood simulator. In: SPE symposium on reservoir simulation. Society of petroleum engineers.  https://doi.org/10.2118/21253-MS, ISBN: 978-1-55563-535-0
  5. Brinkley SR (1947) Calculation of the equilibrium composition of systems of many constituents. J Chem Phys 15(2):107.  https://doi.org/10.1063/1.1746420, ISSN: 00219606CrossRefGoogle Scholar
  6. Castier M, Rasmussen P, Fredenslund A (1989) Calculation of simultaneous chemical and phase equilibria in nonideal systems. Chem Eng Sci 44(2):237–248.  https://doi.org/10.1016/0009-2509(89)85061-4, ISSN: 00092509CrossRefGoogle Scholar
  7. Cisneros ESP, Gani R, Michelsen ML (1997) Reactive separation systems part I. Computation of physical and chemical equilibrium. Chem Eng Sci 52(4):527–543. https://findit.dtu.dk/en/catalog/2282176054
  8. Fletcher R (2000) Practical methods of optimization, 2nd edn. Wiley, New Jersey, ISBN: 978-0-471-49463-8CrossRefGoogle Scholar
  9. Gautam R, Seider WD (1979) Computation of phase and chemical equilibrium: Part I. Local and constrained minima in Gibbs free energy. AIChE J 25(6):991–999.  https://doi.org/10.1002/aic.690250610, ISSN: 0001-1541CrossRefGoogle Scholar
  10. Greiner H (1991) An efficient implementation of newton’s method for complex nonideal chemical equilibria. Comput Chem Eng 15(2):115–123.  https://doi.org/10.1016/0098-1354(91)87010-7, ISSN: 0098-1354CrossRefGoogle Scholar
  11. Hebden MD (1973) An algorithm for minimization using exact second derivatives. Technical report Harwell, England, Report No TP 515: Atomic Energy Research EstabilishmentGoogle Scholar
  12. Hua JZ, Brennecke JF, Stadtherr MA (1996) Reliable prediction of phase stability using an interval Newton method. Fluid Phase Equilibria 116(1–2):52–59.  https://doi.org/10.1016/0378-3812(95)02871-4, ISSN: 03783812CrossRefGoogle Scholar
  13. Huff VN, Gordon S, Morrell VE (1951) General method and thermodynamictables for computation of equilibrium composition and temperature of chemical reactions. Technical report NACA-TR-1037. NASA. https://findit.dtu.dk/en/catalog/2151753181
  14. McDonald CM, Floudas CA (1995) Global optimization for the phase stability problem. AIChE J 41(7):1798–1814.  https://doi.org/10.1002/aic.690410715, ISSN: 0001-1541CrossRefGoogle Scholar
  15. McDonald CM, Floudas CA (1997) GLOPEQ: a new computational tool for the phase and chemical equilibrium problem. Comput Chem Eng 21(1):1–23.  https://doi.org/10.1016/0098-1354(95)00250-2CrossRefGoogle Scholar
  16. Michelsen ML, Heidemann RA (1988) Calculation of tri-critical points. Fluid Phase Equilibria 39(1):53–74.  https://doi.org/10.1016/0378-3812(88)80003-7, ISSN: 03783812CrossRefGoogle Scholar
  17. Michelsen ML (1982a) The isothermal flash problem. Part I. Stability. Fluid Phase Equilibria 9(1):1–19.  https://doi.org/10.1016/0378-3812(82)85001-2, ISSN: 03783812CrossRefGoogle Scholar
  18. Michelsen ML (1982b) The isothermal flash problem. Part II. Phase-split calculation. Fluid Phase Equilibria 9(1):21–40.  https://doi.org/10.1016/0378-3812(82)85002-4, ISSN: 03783812CrossRefGoogle Scholar
  19. Michelsen ML (1989) Calculation of multiphase ideal solution chemical equilibrium. Fluid Phase Equilibria 53:73–80.  https://doi.org/10.1016/0378-3812(89)80073-1, ISSN: 03783812CrossRefGoogle Scholar
  20. Michelsen ML (1994) Calculation of multiphase equilibrium. Comput Chem Eng 18(7):545–550.  https://doi.org/10.1016/0098-1354(93)E0017-4, ISSN: 00981354CrossRefGoogle Scholar
  21. Michelsen ML (1999) State function based flash specifications. Fluid Phase Equilibria 158:617–626.  https://doi.org/10.1016/S0378-3812(99)00092-8, ISSN: 0378-3812CrossRefGoogle Scholar
  22. Michelsen ML, Mollerup J (2007) Thermodynamic models: fundamentals and computational aspects, 2nd edn. Tie-Line publications, Holte, ISBN: 87-989961-3-4Google Scholar
  23. Missen RW, Smith WR (1982) Chemical reaction equilibrium analysis: theory and algorithms, 1st edn. Wiley, New York, p 364, ISBN: 0471093475Google Scholar
  24. Nagarajan NR, Cullick AS, Griewank A (1991) New strategy for phase equilibrium and critical point calculations by thermodynamic energy analysis. Part I. Stability analysis and flash. Fluid Phase Equilibria 62(3):191–210.  https://doi.org/10.1016/0378-3812(91)80010-S, ISSN: 03783812CrossRefGoogle Scholar
  25. Pereira FE et al (2014) On the impact of using volume as an independent variable for the solution of P-T fluid-phase equilibrium with equations of state. Comput Chem Eng 71:67–76.  https://doi.org/10.1016/j.compchemeng.2014.06.009, http://linkinghub.elsevier.com/retrieve/pii/S0098135414001884, ISSN: 00981354CrossRefGoogle Scholar
  26. Petitfrere M, Nichita DV (2014) Robust and efficient trust-region based stability analysis and multiphase flash calculations. Fluid Phase Equilibria 362:51–68.  https://doi.org/10.1016/j.fluid.2013.08.039, http://linkinghub.elsevier.com/retrieve/pii/S0378381213004780, ISSN: 03783812CrossRefGoogle Scholar
  27. Phoenix AV, Heidemann RA (1998) A non-ideal multiphase chemical equilibrium algorithm. Fluid Phase Equilibria 150:255–265.  https://doi.org/10.1016/S0378-3812(98)00325-2, ISSN: 03783812CrossRefGoogle Scholar
  28. Sun H et al (2017) An improved isenthalpic flash algorithm based on maximization of entropy. Fluid Phase Equilibria.  https://doi.org/10.1016/j.fluid.2017.01.007, ISSN: 03783812CrossRefGoogle Scholar
  29. Tsivintzelis I et al (2010) Modeling phase equilibria for acid gas mixtures using the CPA equation of state. I. Mixtures with H2S. AIChE J 56(11):2965–2982.  https://doi.org/10.1002/aic.12207, ISSN: 00011541CrossRefGoogle Scholar
  30. White WB, Johnson SM, Dantzig GB (1958) Chemical equilibrium in complex mixtures. J Chem Phys 28(5):751–755.  https://doi.org/10.1063/1.1744264, ISSN: 0021-9606CrossRefGoogle Scholar
  31. Yan W, Kontogeorgis GM, Stenby EH (2009) Application of the CPA equation of state to reservoir fluids in presence of water and polar chemicals. Fluid Phase Equilibria 276(1):75–85.  https://doi.org/10.1016/j.fluid.2008.10.007, http://linkinghub.elsevier.com/retrieve/pii/S0378381208003488, ISSN: 03783812CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of ChemistryTechnical University of DenmarkKongens LyngbyDenmark

Personalised recommendations