Advertisement

Model Comparison for Phase Equilibrium in Heavy Oil-/Steam-/Solvent-Related Systems

  • Duncan PatersonEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

During reservoir simulation, it is common to use an equation of state (EoS) to accurately model the fluid properties. One important property is which phases form and how the components split among the given phases (the phase equilibrium). In heavy oil recovery, there is often a mixture of light and heavy hydrocarbons with water. It is common to use enhanced recovery techniques such as steam injection. It is therefore necessary to utilise an EoS which is accurate over a large temperature (and pressure) range.

References

  1. Aalto M, Liukkonen S (1996) Bubble point pressures and densities for the binary systems of propane with triacontane, hexatriacontane, tetracontane, pentacontane, and squalane at 353 to 373 K and 4.00 to 7.00 MPa. J Chem Eng Data 41(1):79–83.  https://doi.org/10.1021/je9501393CrossRefGoogle Scholar
  2. Abrams DS, Prausnitz JM (1975) Statistical thermodynamics of liquid mixtures: a new expression for the excess Gibbs energy of partly or completely miscible systems. AIChE J 21(1):116–128.  https://doi.org/10.1002/aic.690210115, ISSN: 0001-1541CrossRefGoogle Scholar
  3. Ahlers J et al (2002) Development of a universal group contribution equation of state. 2. Prediction of vapor-liquid equilibria for asymmetric systems. Ind Eng Chem Res 41(5):3489–3498.  https://doi.org/10.1021/ie020047o, ISSN: 0888-5885CrossRefGoogle Scholar
  4. Anthony RG, McKetta JJ (1967) Phase equilibrium in the ethylene-water system. J Chem Eng Data 12(1):17–20  https://doi.org/10.1021/je60032a006CrossRefGoogle Scholar
  5. Azarnoosh A, McKetta JJ (1958) Solubility of propane in water. Pet Refin 37(11):275–278Google Scholar
  6. Bader MSH, Gasem KAM (1996) Determination of infinite dilution activity coefficients for organic-aqueous systems using a dilute vapor-liquid equilibrium model. Chem Eng Commun 140:41–72CrossRefGoogle Scholar
  7. Bamberger A, Sieder G, Maurer G (2004) High-pressure phase equilibrium of the ternary system carbon dioxide + water + acetic acid at temperatures from 313 to 353 K. J Supercrit Fluids 32(1–3):15–25.  https://doi.org/10.1016/j.supflu.2003.12.014, ISSN: 08968446CrossRefGoogle Scholar
  8. Ben-Naim A, Wilf J, Yaacobi M (1973) Hydrophobic interaction in light and heavy water. J Phys Chem 77(1):95–102.  https://doi.org/10.1021/j100620a021CrossRefGoogle Scholar
  9. Black C, Joris GG, Taylor HS (1948) The solubility of water in hydrocarbons. J Chem Phys 16(5):537–543.  https://doi.org/10.1063/1.1746932CrossRefGoogle Scholar
  10. Boukouvalas C et al (1994) Prediction of vapor-liquid equilibrium with the LCVM model: a linear combination of the Vidal and Michelsen mixing rules coupled with the original UNIFAC and the t-mPR equation of state. Fluid Ph Equilib 92:75–106.  https://doi.org/10.1016/0378-3812(94)80043-X, ISSN: 0378-3812CrossRefGoogle Scholar
  11. Briones JA et al (1987) Ternary phase equilibria for acetic acid-water mixtures with supercritical carbon dioxide. Fluid Ph Equilib 36:235–246.  https://doi.org/10.1016/0378-3812(87)85026-4, ISSN: 03783812CrossRefGoogle Scholar
  12. Bufkin BA et al (1986) Solubility of ethane in n-decane at pressures to 8.2 MPa and temperatures from 278 to 411 K. J Chem Eng Data 31(4):421–423.  https://doi.org/10.1021/je00046a015CrossRefGoogle Scholar
  13. Burgess MP, Germann RP (1969) Phys properties of hydrogen sulfidewater mixtures. AIChE J 15(2):272–275.  https://doi.org/10.1002/aic.690150227, ISSN: 0001-1541CrossRefGoogle Scholar
  14. Camacho-Camacho LE et al (2007) New isothermal vapor-liquid equilibria for the CO2 + n-nonane, and CO2 + n-undecane systems. Fluid Ph Equilib 259(1):45-50.  https://doi.org/10.1016/j.fluid.2007.04.022, http://www.sciencedirect.com/science/article/pii/S0378381207002178, ISSN: 0378-3812CrossRefGoogle Scholar
  15. Carroll JJ, Jou F-Y, Mather AE (1997) Fluid phase equilibria in the system n-butane + water. Fluid Ph Equilib 140(1–2):157–169.  https://doi.org/10.1016/S0378-3812(97)00199-4, ISSN: 03783812CrossRefGoogle Scholar
  16. Catinca S, Viorel F, Dan G (2010) Phase behavior for the carbon dioxide + N-pentadecane binary system. J Chem Eng Data 55(10):4255–4259.  https://doi.org/10.1021/je100404gCrossRefGoogle Scholar
  17. Chapman WG, Gubbins KE et al (1990) New reference equation of state for associating liquids. Ind Eng Chem Res 29(8):1709–1721.  https://doi.org/10.1021/ie00104a021, ISSN: 0888-5885CrossRefGoogle Scholar
  18. Chapman WG, Jackson G, Gubbins KE (1988) Phase equilibria of associating fluids. Mol Phys 65(5):1057–1079.  https://doi.org/10.1080/00268978800101601, arXiv:1011.1669v3, ISSN: 0026-8976CrossRefGoogle Scholar
  19. Chapoy A, Mohammadi AH et al (2004) Gas solubility measurement and modeling for methane-water and methane-ethane-n-butane-water systems at low temperature conditions. Fluid Ph Equilib 220(1):111–119.  https://doi.org/10.1016/j.fluid.2004.02.010, http://www.sciencedirect.com/science/article/pii/S0378381204001207, ISSN: 0378-3812CrossRefGoogle Scholar
  20. Chapoy A, Mokraoui S et al (2004) Solubility measurement and modeling for the system propane-water from 277.62 to 368.16 K. Fluid Ph Equilib 226:213–220.  https://doi.org/10.1016/j.fluid.2004.08.040, http://www.sciencedirect.com/science/article/pii/S0378381204004236, ISSN: 0378-3812CrossRefGoogle Scholar
  21. Chapoy, Mohammadi AH et al (2005) Experimental measurement and phase behavior modeling of hydrogen sulfide-water binary system. Ind Eng Chem Res 44(19):7567–7574.  https://doi.org/10.1021/ie050201h, ISSN: 0888-5885CrossRefGoogle Scholar
  22. Chen H, Wagner J (1994) Mutual solubilities of alkylbenzene + water systems at temperatures from 303 to 373 k: ethylbenzene, p-xylene, 1,3,5=trimethylbenzene, and butylbenzene. J Chem Eng Data 39(4):679–684.  https://doi.org/10.1021/je00016a008, ISSN:0021-9568CrossRefGoogle Scholar
  23. Chapoy A, Coquelet C, Richon D (2003) Measurement of the water solubility in the gas phase of the ethane + water binary system near hydrate forming conditions. J Chem Eng Data 48(4):957–966.  https://doi.org/10.1021/je0202230CrossRefGoogle Scholar
  24. Chapoy A, Coquelet C, Richon D (2005) Corrigendum to "Revised solubility data And modeling of water in the gas phase of the methane/water binary system at temperatures from 283.08 to 318.12 K and pressures up to 34.5 MPa [Fluid Ph Equilib 214(2003):101–117]. Fluid Phe Equilib 230(1–2):210–214.  https://doi.org/10.1016/j.fluid.2004.07.005, http://www.sciencedirect.com/science/article/pii/S0378381204003280, ISSN: 0378-3812CrossRefGoogle Scholar
  25. Chou GF, Forbert RR, Prausnitz JM (1990) High-pressure vapor-liquid equilibria for carbon dioxide/n-decane, carbon dioxide/tetralin, and carbon dioxide/ndecane/tetralin at 71.1 and 104.4.degree. C. J Chem Eng Data 35(1):26–29.  https://doi.org/10.1021/je00059a008CrossRefGoogle Scholar
  26. Clark ECW , Glew DN (1971) Aqueous nonelectrolyte solutions. Part VIII. Deuterium and hydrogen sulfides solubilities in deuterium oxide and water. Can J Chem 49(5):691–698.  https://doi.org/10.1139/v71-116, ISSN: 0008-4042CrossRefGoogle Scholar
  27. Claussen WF, Polglase MF (1952) Solubilities and structures in aqueous aliphatic hydrocarbon solutions. J Am Chem Soc 74(19):4817–4819.  https://doi.org/10.1021/ja01139a026, ISSN: 0002-7863CrossRefGoogle Scholar
  28. Coniglio L, Knudsen K, Gani R (1996)Prediction of supercritical fluid liquid equilibria for carbon dioxide and fish oil related compounds through the equation of state-excess function (EOS-gE) approach. Fluid Ph Equilib 116(1–2):510–517.  https://doi.org/10.1016/0378-3812(95)02925-7, ISSN: 03783812CrossRefGoogle Scholar
  29. Connolly JF (1966) Solubility of hydrocarbons in water near the critical solution temperatures. J Chem Eng data 11(1):13–16.  https://doi.org/10.1021/je60028a003, ISSN: 0021-9568CrossRefGoogle Scholar
  30. Coutinho JAP, Kontogeorgis GM, Stenby EH (1994) Binary interaction parameters for nonpolar systems with cubic equations of state: a theoretical approach 1. CO2/hydrocarbons using SRK equation of state. Fluid Ph Equilib 102(1):31–60.  https://doi.org/10.1016/0378-3812(94)87090-X, ISSN: 03783812CrossRefGoogle Scholar
  31. Culberson OL, Horn AB, McKetta JJ Jr (1950) Phase equilibria in hydrocarbon-water systems. J Pet Technol 2(1):1–6.  https://doi.org/10.2118/950001-GCrossRefGoogle Scholar
  32. Dahl S, Michelsen ML (1990) High-pressure vapor-liquid equilibrium with a UNIFAC-based equation of state. AIChE J 36(12):1829–1836.  https://doi.org/10.1002/aic.690361207, ISSN: 1547-5905CrossRefGoogle Scholar
  33. Danneil A, Todheide K, Franck EU (1967) Verdampfungsgleichgewichte und kritische Kurven in den Systemen Athan/Wasser und n-Butan/Wasser bei hohen Drucken. Chemie Ingenieur Technik 39(13):816–822.  https://doi.org/10.1002/cite.330391309, ISSN: 15222640CrossRefGoogle Scholar
  34. de Goede R et al (1989) Phase equilibria in binary mixtures of ethane and hexadecane. Fluid Ph Equilib 50(3):305–314.  https://doi.org/10.1016/0378-3812(89)80297-3, ISSN: 0378-3812CrossRefGoogle Scholar
  35. De Loos ThW, Wijen AJM, Diepen GAM (1980) Phase equilibria and critical phenomena in fluid (propane + water) at high pressures and temperatures. J Chem Thermodyn 12(2):193–204.  https://doi.org/10.1016/0021-9614(80)90130-5, ISSN: 00219614CrossRefGoogle Scholar
  36. Dhima A, de Hemptinne J-C, Jose J (1999) Solubility of hydrocarbons and CO\(_2\) mixtures in water under high pressure. Ind Eng Chem Res 38(8):3144–3161.  https://doi.org/10.1021/ie980768gCrossRefGoogle Scholar
  37. Dohrn R et al (1993) Experimental measurements of phase equilibria for ternary and quaternary systems of glucose, water, CO2 and ethanol with a novel apparatus. Fluid Ph Equilib 83:149-158.  https://doi.org/10.1016/0378-3812(93)87017-U, ISSN: 03783812CrossRefGoogle Scholar
  38. D’souza R, Patrick JR, Teja AS (1988) High pressure phase equilibria in the carbon dioxide - n-Hexadecane and carbon dioxide-water systems. Can J Chem Eng 66(2):319–323.  https://doi.org/10.1002/cjce.5450660221CrossRefGoogle Scholar
  39. du Rand M, Nieuwoudt I (2001) Measurement of phase equilibria of supercritical ethane and paraffins. J Supercrit Fluids 21(3):181–193Google Scholar
  40. Duarte MC et al (2015) Modelling the phase behavior of alkane mixtures in wide ranges of conditions: new parameterization and predictive correlations of binary interactions for the RKPR EOS. Fluid Ph Equilib 403(0):49–59.  https://doi.org/10.1016/j.fluid.2015.06.005, http://www.sciencedirect.com/science/article/pii/S0378381215003246, ISSN: 0378-3812CrossRefGoogle Scholar
  41. Feng GX, Mather AE (1992) Solubility of hydrogen sulfide in n-eicosane at elevated pressure. J Chem Eng Data 37(4):412–413.  https://doi.org/10.1021/je00008a009CrossRefGoogle Scholar
  42. Franks F (1966) Solute-water interactions and the solubility behaviour of long-chain paraffin hydrocarbons. Nature 210:87CrossRefGoogle Scholar
  43. Galicia-Luna LA, Jimenez-Gallegos R, Elizalde-Solis O (2006) Experimental vapor- liquid equilibria for the carbons dioxide with octane and carbon dioxide with decane systems. J Chem Eng Data 51(5):1624–1628.  https://doi.org/10.1021/je060111zCrossRefGoogle Scholar
  44. Gardeler H, Fischer K, Gmehling J (2002) Experimental determination of vapor liquid equilibrium data for asymmetric systems. Ind Eng Chem Res 41:1051–1056CrossRefGoogle Scholar
  45. Gasem KAM, Bufkin BA et al (1989) Solubilities of ethane in heavy normal paraffins at pressures to 7.8 MPa and temperatures from 348 to 423 K. J Chem Eng Data 34(2):187–191  https://doi.org/10.1021/je00056a012CrossRefGoogle Scholar
  46. Gasem KAM, Robinson RL Jr (1985) Solubilities of carbon dioxide in heavy normal paraffins (C20-C44) at pressures to 9.6 MPa and temperatures from 323 to 423 K. J Chem Eng Data 30(1):53–56.  https://doi.org/10.1021/je00039a018CrossRefGoogle Scholar
  47. Georgios Kontogeorgis M, Vlamos PM (2000) An interpretation of the behavior of EoS/G(E) models for asymmetric systems. Chem Eng Sci 55(13):2351–2358.  https://doi.org/10.1016/S0009-2509(99)00472-8, ISSN: 00092509CrossRefGoogle Scholar
  48. Gregorowicz J, De Loos TW, De Swaan Arons J (1992) The system propane + eicosane: P, T, and x measurements in the temperature range 288–358 K. J Chem Eng Data 37(3):356–358.  https://doi.org/10.1021/je00007a022CrossRefGoogle Scholar
  49. Gross J (2005) An equation-of-state contribution for polar components: Quadrupolar molecules. AIChE J 51(9):2556–2568.  https://doi.org/10.1002/aic.10502, ISSN: 0001-1541CrossRefGoogle Scholar
  50. Gross J, Sadowski G (2001) Perturbed-chain SAFT: an equation of state based on a perturbation theory for chain molecules. Ind Eng Chem Res 40(4):1244–1260.  https://doi.org/10.1021/ie0003887, ISSN: 0888-5885CrossRefGoogle Scholar
  51. Guo H et al (2014) Quantitative Raman spectroscopic investigation of geo-fluids high-pressure phase equilibria: Part I. Accurate calibration and determination of CO\(_2\) solubility in water from 273.15 to 573.15K and from 10 to 120MPa. Fluid Ph Equilib 382:70–79.  https://doi.org/10.1016/j.fluid.2014.08.032, ISSN: 03783812CrossRefGoogle Scholar
  52. Hiroyuki T, Yoshikazu Y, Masahiro K (1993) Solubility of carbon dioxide in pentadecane, hexadecane, and pentadecane + hexadecane. J Chem Eng Data 38(3):386–388.  https://doi.org/10.1021/je00011a013CrossRefGoogle Scholar
  53. Hou S-X, Maitland GC, Martin Trusler JP (2013) Measurement and modeling of the phase behavior of the (carbon dioxide+water) mixture at temperatures from 298.15K to 448.15K. J Supercrit Fluids 73:87-96.  https://doi.org/10.1016/j.supflu.2012.11.011, ISSN: 08968446CrossRefGoogle Scholar
  54. Huang H, Lin HM, Chu Chao K (1988) Solubility of carbon dioxide, methane, and ethane in n-octacosane. J Chem Eng Data 33(2):143–145.  https://doi.org/10.1021/je00052a025CrossRefGoogle Scholar
  55. Huie NC, Luks KD, Kohn JP (1973) Phase-equilibriums behavior of systems carbon dioxide-n-eicosane and carbon dioxide-n-decane-n-eicosane. J Chem Eng Data 18(3):311–313.  https://doi.org/10.1021/je60058a008CrossRefGoogle Scholar
  56. Huron MJ, Vidal J (1979) New mixing rules in simple equations of state for representing vapour-liquid equilibria of strongly non-ideal mixtures. Fluid Ph Equilib 3(4):255–271CrossRefGoogle Scholar
  57. Ioannis T et al (2012) The cubic-plus-association EoS parameters for pure compounds and interaction parameters. Technical report CERE, Center for energy resources engineeringGoogle Scholar
  58. Jennings DW, Schucker RC (1996) Comparison of high-pressure vapor liquid equilibria of mixtures of CO2 or Propane with Nonane and C9 Alkylbenzenes. J Chem Eng Data 41(4):831–838.  https://doi.org/10.1021/je960033nCrossRefGoogle Scholar
  59. Joffrion LL, Eubank PT (1988) P-V-T data and virial coefficients for gaseous methane-water mixtures with correction for adsorption effects. Fluid Ph Equilib 43(2–3):263–294.  https://doi.org/10.1016/0378-3812(88)87010-9, http://www.sciencedirect.com/science/article/pii/0378381288870109, ISSN: 0378-3812CrossRefGoogle Scholar
  60. Johannes T et al (2002) Aqueous solubility molecular size relationships: a mechanistic case study using C10 to C19 alkanes. J Phys Chemy A 106(11):2760–2765.  https://doi.org/10.1021/jp011755aCrossRefGoogle Scholar
  61. Jou F-Y, Mather AE (2003) Liquid-Liquid equilibria for binary mixtures of water + benzene, water + toluene, and water + \(<\)i\(>\)p\(<\)/i\(>\) -xylene from 273 K to 458 K. J Chem Eng Data 48(3):750–752.  https://doi.org/10.1021/je034033g, ISSN: 0021-9568CrossRefGoogle Scholar
  62. King AD, Coan CR (1971) Solubility of water in compressed carbon dioxide, nitrous oxide, and ethane. Evidence for hydration of carbon dioxide and nitrous oxide in the gas phase. J Am Chem Soc 93(8):1857–1862.  https://doi.org/10.1021/ja00737a004CrossRefGoogle Scholar
  63. King MB et al (1992) The mutual solubilities of water with supercritical and liquid carbon dioxides. J Supercrit Fluids 5(4):296–302.  https://doi.org/10.1016/0896-8446(92)90021-B, ISSN: 08968446CrossRefGoogle Scholar
  64. Knudsen K, Coniglio L, Gani R (1995) Correlation and prediction of phase equilibria of mixtures with supercritical compounds for a class of equations of state. Innov Supercrit Fluids ACS Symp Ser 608:140–153.  https://doi.org/10.1021/bk-1995-0608.ch009CrossRefGoogle Scholar
  65. Kobayashi R, Katz D (1953) Vapor-liquid equilibria for binary hydrocarbon-water systems. Ind Eng Chem 45(2):440–446.  https://doi.org/10.1021/ie50518a051CrossRefGoogle Scholar
  66. Kontogeorgis GM, Folas GK (2010) Thermodynamic models for industrial applications : from classical and advanced mixing rules to association theories. Wiley, New Jersey, p 692. ISBN: 9780470697269Google Scholar
  67. Kontogeorgis GM et al (1996) An equation of state for associating fluids. Ind Eng Chem Res 35(11):4310–4318.  https://doi.org/10.1021/ie9600203, ISSN: 0888-5885CrossRefGoogle Scholar
  68. Kontogeorgis GM, Yakoumis IV et al (1999) Multicomponent phase equilibrium calculations for water-methanol-alkane mixtures. Fluid Ph Equilib 158–160:201–209.  https://doi.org/10.1016/S0378-3812(99)00060-6, ISSN: 03783812CrossRefGoogle Scholar
  69. Kresheck GC, Schneider H, Scheraga HA (1965) The effect of D2O on the thermal stability of proteins. Thermodynamic parameters for the transfer of model compounds from H2O to D2O. J Phys Chem 69(9):3132–3144.  https://doi.org/10.1021/j100893a054, ISSN: 0022-3654PubMedCrossRefGoogle Scholar
  70. Lafitte T et al (2013) Accurate statistical associating fluid theory for chain molecules formed from Mie segments. J Chem Phys 139(15):154504.  https://doi.org/10.1063/1.4819786, ISSN: 0021-9606PubMedCrossRefGoogle Scholar
  71. LeBreton JG, Mcketta JJ (1964) Low pressure solubility of n-butane in water. Hydrocarb Process Pet Refin 43(6):136–138Google Scholar
  72. Lee KH, Kohn JP (1969) Heterogeneous phase equilibrium in the ethane-ndodecane system. J Chem Eng Data 14(3):292–295.  https://doi.org/10.1021/je60042a021CrossRefGoogle Scholar
  73. Legret D, Richon D, Renon H (1980) Static Still for Measuring Vapor-Liquid Equilibria up to 50 bar. Ind Eng Chem Fundam 19(1):122–126.  https://doi.org/10.1021/i160073a021CrossRefGoogle Scholar
  74. Lekvam K, Raj Bishnoi P (1997) Dissolution of methane in water at low temperatures and intermediate pressures. Fluid Ph Equilib 131(1–2):297–309.  https://doi.org/10.1016/S0378-3812(96)03229-3, ISSN: 0378-3812CrossRefGoogle Scholar
  75. Liang X (2014) Thermodynamic modeling of complex systems. PhD thesis. Technical University of DenmarkGoogle Scholar
  76. Luszczyk M, Radosz M (2003) Temperature- and pressure-induced crystallization and melting of tetracontane in propane: evidence of retrograde crystallization. J Chem Eng Data 48(2):226–230.  https://doi.org/10.1021/je025533xCrossRefGoogle Scholar
  77. Marian G, Barbara W-G, Andrzej M (2004) Recommended liquid-liquid equilibrium data. Part 3. Alkylbenzene-water systems. J Phys Chem Ref Data 33(4):1159–1188.  https://doi.org/10.1063/1.1797038CrossRefGoogle Scholar
  78. Masashi H et al (2000) Measurement and correlation of phase equilibria for water and hydrocarbon systems near the critical temperature and pressure of water. Ind Eng Chem Res 39(12):4516–4520.  https://doi.org/10.1021/ie000185iCrossRefGoogle Scholar
  79. Mathias PM, Copeman TW (1983) Extension of the Peng-Robinson equation of state to complex mixtures: evaluation of the various forms of the local composition concept. Fluid Ph Equilib 13:91–108.  https://doi.org/10.1016/0378-3812(83)80084-3, ISSN: 0378-3812CrossRefGoogle Scholar
  80. Meyer CW, Harvey AH (2015) Dew-point measurements for water in compressed carbon dioxide. AIChE J 61(9):2913–2925.  https://doi.org/10.1002/aic.14818, ISSN: 15475905CrossRefGoogle Scholar
  81. Michele M-L, Dominique R, Henri R (1981) New variable volume cell for determining vapor-liquid equilibriums and saturated liquid molar volumes by the static method. Ind Eng Chem Fundam 20(3):284–289.  https://doi.org/10.1021/i100003a017CrossRefGoogle Scholar
  82. Michelsen ML (1980) Calculation of phase envelopes and critical points for multicomponent mixtures. Fluid Ph Equilib 4(1–2):1–10.  https://doi.org/10.1016/0378-3812(80)80001-X, ISSN: 03783812CrossRefGoogle Scholar
  83. Michelsen ML (1982) The isothermal flash problem. Part I. Stability. Fluid Ph Equilib 9(1):1–19.  https://doi.org/10.1016/0378-3812(82)85001-2, ISSN: 03783812CrossRefGoogle Scholar
  84. Michelsen ML (1990) A modified Huron-Vidal mixing rule for cubic equations of state. Fluid Ph Equilib 60(1–2):213–219.  https://doi.org/10.1016/0378-3812(90)85053-D, ISSN: 0378-3812CrossRefGoogle Scholar
  85. Michelsen ML, Mollerup JM (2007) Thermodynamic models: fundamentals & computational aspects, 2nd edn. Tie-Line publications, Holte. ISBN: 87-989961-3-4Google Scholar
  86. Mohammadi AH et al (2004) Experimental measurement and thermodynamic modeling of water content in methane and ethane systems. Ind Eng Chem Res 43(22):7148–7162.  https://doi.org/10.1021/ie049843fCrossRefGoogle Scholar
  87. Nagarajan N, Robinson RL (1986) Equilibrium phase compositions, phase densities, and interfacial tensions for carbon dioxide + hydrocarbon systems. 2. Carbon dioxide + n-decane. J Chem Eng Data 31(2):168–171.  https://doi.org/10.1021/je00044a012CrossRefGoogle Scholar
  88. Neely BJ et al (2008) Mutual solubility measurements of hydrocarbon-water systems containing benzene, toluene, and 3-methylpentane. J Chem Eng Data 53(1):165–174.  https://doi.org/10.1021/je700449z, ISSN: 0021-9568CrossRefGoogle Scholar
  89. Nieuwoudt I, du Rand M (2002) Measurement of phase equilibria of supercritical carbon dioxide and paraffins. J Supercrit Fluids 22(3):185–199.  https://doi.org/10.1016/S0896-8446(01)00122-X, ISSN: 0896-8446CrossRefGoogle Scholar
  90. Nighswander JA, Kalogerakis N, Mehrotra AK Solubilities of carbon dioxide in water and 1 wtGoogle Scholar
  91. Olds RH, Sage BH, Lacey WN (1942) Phase equilibria in hydrocarbon systems. Composition of the dew-point gas of the methane-water system. Ind Eng Chem 34(10):1223–1227.  https://doi.org/10.1021/ie50394a018CrossRefGoogle Scholar
  92. Orakova SM, Rasulov SM, Abdulagatov IM (2014) Experimental study of the PVTx relationship, L-L-V and L-V phase boundary of n-hexane + water mixtures near the upper and lower critical lines. Phys Chem Liq 52(1):130–198.  https://doi.org/10.1080/00319104.2013.802208, ISSN: 0031-9104CrossRefGoogle Scholar
  93. Orbach O, Crowe CM (1971) Convergence promotion in the simulation of chemical processes with recycle-the dominant eigenvalue method. Can J Chem Eng 49(4):509–513.  https://doi.org/10.1002/cjce.5450490414, ISSN: 00084034CrossRefGoogle Scholar
  94. Orbey H, Sandler SI (1997) A comparison of Huron-Vidal type mixing rules of mixtures of compounds with large size differences, and a new mixing rule. Fluid Ph Equilib 132(1–2):1–14.  https://doi.org/10.1016/S0378-3812(97)00037-X, ISSN: 03783812CrossRefGoogle Scholar
  95. Owens JW, Wasik SP, DeVoe H (1986) Aqueous solubilities and enthalpies of solution of n-alkylbenzenes. J Chem Eng Data 31(1):47–51.  https://doi.org/10.1021/je00043a016, ISSN: 0021-9568CrossRefGoogle Scholar
  96. Paul S (1963) Solubilities of water in several normal alkanes from C7 to C16. J Phys Chem 67(4):776–779.  https://doi.org/10.1021/j100798a014CrossRefGoogle Scholar
  97. Péneloux A, Rauzy E, Fréze R (1982) A consistent correction for Redlich-Kwong-Soave volumes. Fluid Ph Equilib 8(1):7–23.  https://doi.org/10.1016/0378-3812(82)80002-2, ISSN: 03783812CrossRefGoogle Scholar
  98. Peng DY, Robinson DB (1976) A new two-constant equation of state. Ind Eng Chem Fundam 15(1):59–64.  https://doi.org/10.1021/i160057a011CrossRefGoogle Scholar
  99. Perez AG et al (2017) Comparative study of vapour-liquid equilibrium and density modelling of mixtures related to carbon capture and storage with the SRK, PR, PC-SAFT and SAFT-VR Mie equations of state for industrial uses. Fluid Ph Equilib 440:19–35.  https://doi.org/10.1016/j.fluid.2017.02.018http://linkinghub.elsevier.com/retrieve/pii/S0378381217300833, ISSN: 03783812CrossRefGoogle Scholar
  100. Peters CJ, De Roo JL, Lichtenthaler RN (1987a) Measurements and calculations of phase equilibria of binary mixtures of ethane + eicosane. Part I: vapour + liquid equilibria. Fluid Ph Equilib 34(2–3):287–308.  https://doi.org/10.1016/0378-3812(87)80037-7, ISSN: 0378-3812CrossRefGoogle Scholar
  101. Peters CJ, Van Der Kooi HJ, De Swaan Arons J (1987b) Measurements and calculations of phase equilibria for (ethane + tetracosane) and (p, V, T) of liquid tetracosane. J Chem Thermodyn 19(4):395–405.  https://doi.org/10.1016/0021-9614(87)90125-X, ISSN: 0021-9614CrossRefGoogle Scholar
  102. Peters CJ, Spiegelaar J, De Swaan Arons J (1988) Phase equilibria in binary mixtures of ethane + docosane and molar volumes of liquid docosane. Fluid Ph Equilib 41(3):245–256.  https://doi.org/10.1016/0378-3812(88)80009-8, ISSN: 0378-3812CrossRefGoogle Scholar
  103. Peters CJ, de Roo JL, de Swaan Arons J (1993) Phase equilibria in binary mixtures of propane and hexacontane. Fluid Ph Equilib 85(0):301–312.  https://doi.org/10.1016/0378-3812(93)80021-E, ISSN: 0378-3812CrossRefGoogle Scholar
  104. Reamer HH, Olds RH et al (1943) Phase equilibria in hydrocarbon systems. Composition of dew-point gas in ethane-water system. Ind Eng Chem 35(7):790–793.  https://doi.org/10.1021/ie50403a012CrossRefGoogle Scholar
  105. Reamer HH, Sage BH (1962) Phase equilibria in hydrocarbon systems. Volumetric and phase behavior of the ethane-n-decane system. J Chem Eng Data 7(2):161–168.  https://doi.org/10.1021/je60013a001CrossRefGoogle Scholar
  106. Reamer HH, Sage BH (1963) Phase Equilibria in hydrocarbon systems. Volumetric and phase behavior of the n-decane-co\(_2\) system. J Chem Eng Data 8(4):508–513.  https://doi.org/10.1021/je60019a010CrossRefGoogle Scholar
  107. Reamer HH, Sage BH (1966) Phase equilibria in hydrocarbon systems. Volumetric and phase behavior of the Propane-n-Decane system. J Chem Eng Data 11(1):17–24.  https://doi.org/10.1021/je60028a004CrossRefGoogle Scholar
  108. Reamer HH, Sage BH, Lacey WN (1952) Phase equilibria in hydrocarbon systems. n-butane-water system in the two-phase region. Ind Eng Chem 44(3):609–615.  https://doi.org/10.1021/ie50507a049CrossRefGoogle Scholar
  109. Renon H, Prausnitz JM (1968) Local compositions in thermodynamic excess functions for liquid mixtures. AIChE J 14(1):135–144.  https://doi.org/10.1002/aic.690140124, ISSN: 1547-5905CrossRefGoogle Scholar
  110. Rice Philip A, Gale Robert P, Barduhn Allen J (1976) Solubility of butane in water and salt solutions at low temperatures. J Chem Eng data 21(2):204–206.  https://doi.org/10.1021/je60069a021CrossRefGoogle Scholar
  111. Rigby M, Prausnitz JM (1968) Solubility of water in compressed nitrogen, argon, and methane. J Phys Chem 72(1):330–334.  https://doi.org/10.1021/j100847a064CrossRefGoogle Scholar
  112. Rodriguez-Reartes et al SB (2009) High-pressure phase equilibria of systems carbon dioxide + n-eicosane and propane + n-eicosane. J Supercrit Fluids 50(3):193–202.  https://doi.org/10.1016/j.supflu.2009.06.017, http://www.sciencedirect.com/science/article/pii/S0896844609002290, ISSN: 0896-8446CrossRefGoogle Scholar
  113. Rumpf B et al (1994) Solubility of carbon dioxide in aqueous solutions of sodium chloride: experimental results and correlation. J Solut Chem 23(3):431–448.  https://doi.org/10.1007/BF00973113, ISSN: 1572-8927
  114. Sako T et al (1991) Phase equilibrium study of extraction and concentration of furfural produced in reactor using supercritical carbon dioxide. J Chem Eng Jpn 24(4):449–455.  https://doi.org/10.1252/jcej.24.449, ISSN: 0021-9592CrossRefGoogle Scholar
  115. Sato Y et al (1998) Solubility of carbon dioxide in eicosane, docosane, tetracosane, and octacosane at temperatures from 323 to 473 K and pressures up to 40 MPa. Fluid Ph Equilib 147(1–2):181–193.  https://doi.org/10.1016/S0378-3812(98)00250-7, ISSN: 0378-3812CrossRefGoogle Scholar
  116. Schwarz CE, Bonthuys GJK et al (2008) The influence of functional end groups on the high-pressure phase equilibria of long chain molecules in supercritical propane. J Supercrit Fluids 46(3):233–237.  https://doi.org/10.1016/j.supflu.2008.03.008, http://www.sciencedirect.com/ science/article/pii/S0896844608001046, ISSN: 0896-8446CrossRefGoogle Scholar
  117. Schwarz CE, Nieuwoudt I (2003a) Phase equilibrium of propane and alkanes: Part I. Experimental procedures, dotriacontane equilibrium and EOS modelling. J Supercrit Fluids 27(2):133–144.  https://doi.org/10.1016/S0896-8446(02)00232-2, ISSN: 0896-8446CrossRefGoogle Scholar
  118. Schwarz CE, Nieuwoudt I (2003b) Phase equilibrium of propane and alkanes part II: hexatriacontane through hexacontane. J Supercrit Fluids 27(2):145–156.  https://doi.org/10.1016/S0896-8446(02)00268-1, ISSN: 0896-8446CrossRefGoogle Scholar
  119. Schwarz CE, Nieuwoudt I, Knoetze JH (2008) Phase equilibria of long chain n-alkanes in supercritical ethane: review, measurements and prediction. J Supercrit Fluids 46(3):226–232CrossRefGoogle Scholar
  120. Secuianu C, Feroiu V, Geana D (2007) Investigation of phase equilibria in the ternary system carbon dioxide + 1-heptanol + n-pentadecane. Fluid Ph Equilib 261(1–2):337–342.  https://doi.org/10.1016/j.fluid.2007.07.001, http://www.sciencedirect.com/science/article/pii/S0378381207003688, ISSN: 0378-3812CrossRefGoogle Scholar
  121. Selleck FT, Carmichael LT, Sage BH (1952) Phase behavior in the hydrogen sulfide-water system. Ind Eng Chem 44(9):2219–2226.  https://doi.org/10.1021/ie50513a064, ISSN: 0019-7866CrossRefGoogle Scholar
  122. Soave G (1972) Equilibrium constants from a modified Redlich-Kwong equation of state. Chem Eng Sci 27(6):1197–1203.  https://doi.org/10.1016/0009-2509(72)80096-4, ISSN: 0009-2509CrossRefGoogle Scholar
  123. Stevenson RL et al (1994) Fluid Phase equilibria and critical phenomena for the dodecane water and squalane water systems at elevated temperatures and pressures. Fluid Ph Equilib 93(0):317–336.  https://doi.org/10.1016/0378-3812(94)87016-0, ISSN: 0378-3812CrossRefGoogle Scholar
  124. Stryjek R, Vera JH (1986) PRSV: an improved Peng-Robinson equation of state for pure compounds and mixtures. Can J Chem Eng 64(2):323–333.  https://doi.org/10.1002/cjce.5450640224, ISSN: 00084034CrossRefGoogle Scholar
  125. Tian Y et al (2004) High pressure phase equilibria and critical phenomena of water + iso-butane and water + n-butane systems to 695 K and 306 MPa. J Supercrit Fluids 30(2):145–153.  https://doi.org/10.1016/j.supflu.2003.09.002, http://www.sciencedirect.com/science/article/pii/S0896844603002109, ISSN: 0896-8446CrossRefGoogle Scholar
  126. Tihic A (2008) Group contribution sPC-SAFT equation of state. PhD thesis. Technical University of DenmarkGoogle Scholar
  127. Tong D, Martin Trusler JP, Vega-Maza D (2013) Solubility of CO\(_2\) in aqueous solutions of CaCl\(_2\) or MgCl\(_2\) and in a synthetic formation brine at temperatures up to 423 K and pressures up to 40 MPa. J Chem Eng Data 58(7):2116–2124.  https://doi.org/10.1021/je400396sCrossRefGoogle Scholar
  128. Tsai FN, Huang SH et al (1987) Solubility of methane, ethane, and carbon dioxide in n-hexatriacontane. J Chem Eng Data 32(4):467–469.  https://doi.org/10.1021/je00050a025CrossRefGoogle Scholar
  129. Tsai FN, Yau JS (1990) Solubility of carbon dioxide in n-tetracosane and in n-dotriacontane. J Chem Eng Data 35(1):43–45.  https://doi.org/10.1021/je00059a014CrossRefGoogle Scholar
  130. Valtz A et al (2004) Vapour-liquid equilibria in the carbon dioxide-water system, measurement and modelling from 278.2 to 318.2 K. Fluid Ph Equilib 226(1–2):333–344.  https://doi.org/10.1016/j.fluid.2004.10.013, ISSN: 03783812CrossRefGoogle Scholar
  131. von Solms N et al (2003) Computational and physical performance of a modified PCSAFT equation of state for highly asymmetric and associating mixtures. Ind Eng Chem Res 42:1098–1105.  https://doi.org/10.1021/ie020753p, ISSN: 15205045CrossRefGoogle Scholar
  132. Voutsas E et al (2007) An evaluation of the performance of the Cubic-Plus-Association equation of state in mixtures of non-polar, polar and associating compounds: Towards a single model for non-polymeric systems. Fluid Ph Equilib 261(1–2):343–350.  https://doi.org/10.1016/j.fluid.2007.07.051, http://linkinghub.elsevier.com/retrieve/pii/S037838120700444X, ISSN: 03783812CrossRefGoogle Scholar
  133. Wang Q, Chao K-C (1990) Vapor-liquid and liquid-liquid equilibria and critical states of water + n-decane mixtures. Fluid Ph Equilib 59(2):207–215.  https://doi.org/10.1016/0378-3812(90)85035-9, ISSN: 0378-3812CrossRefGoogle Scholar
  134. Wen W-Y, Hung JH (1970) Thermodynamics of hydrocarbon gases in aqueous tetraalkylammonium salt solutions. J Phys Chem 74(1):170–180.  https://doi.org/10.1021/j100696a032CrossRefGoogle Scholar
  135. Weng WL, Lee MJ (1992) Vapor-liquid equilibrium of the octane/carbon dioxide, octane/ethane, and octane/ethylene systems. J Chem Eng Data 37(2):213–215.  https://doi.org/10.1021/je00006a020CrossRefGoogle Scholar
  136. Wright RH, Maass O (1932) The solubility of hydrogen sulphide in water from the vapour pressures of solutions. Can J Res 6(1): 94–101.  https://doi.org/10.1139/cjr32-006, ISSN: 1923-4287CrossRefGoogle Scholar
  137. Yan W, Kontogeorgis GM, Stenby EH (2009) Application of the CPA equation of state to reservoir fluids in presence of water and polar chemicals. Fluid Ph Equilib 276(1):75–85.  https://doi.org/10.1016/j.fluid.2008.10.007, http://linkinghub.elsevier.com/retrieve/pii/S0378381208003488, ISSN: 03783812CrossRefGoogle Scholar
  138. Yiling T, Michelberger Th, Franck EU (1991) High-pressure phase equilibria and critical curves of (water + n-butane) and (water + n-hexane) at temperatures to 700 K and pressures to 300 MPa. J Chem Thermodyn 23(1):105–112.  https://doi.org/10.1016/S0021-9614(05)80063-1, ISSN: 0021-9614CrossRefGoogle Scholar
  139. Yokoyama C et al (1988) Vapor-liquid equilibria in the methane-diethylene glycolwater system at 298.15 and 323.15 K. J Chem Eng Data 33(3):274–276.  https://doi.org/10.1021/je00053a015CrossRefGoogle Scholar
  140. Zamudio M, Schwarz CE, Knoetze JH (2011) Phase equilibria of branched isomers of C10-alcohols and C10-alkanes in supercritical ethane. J Supercrit Fluids 58(3):330–342.  https://doi.org/10.1016/j.supflu.2011.07.004, http://www.sciencedirect.com/science/article/pii/S0896844611002634, ISSN: 0896-8446CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of ChemistryTechnical University of DenmarkKongens LyngbyDenmark

Personalised recommendations