Advertisement

Diabetes Mellitus

  • Yazid N. Al HamarnehEmail author
  • Rick L. Siemens
  • Kendra J. Townsend
  • Ross T. Tsuyuki
Chapter

Abstract

Diabetes mellitus is a group of metabolic diseases characterized by elevated blood glucose levels (hyperglycemia) which could be caused by flaws in the secretion of insulin, its action, or both. Around 6% of the world’s population were living with diabetes in 2014. The two major types of diabetes are type I and type II. Insulin should be started at the day of diagnosis for patients with type I diabetes. Insulin regimens should be individualized based on age, general health, lifestyle, diet, hypoglycemia awareness, ability for self-management, general health, adherence, and social and financial aspects. The most successful insulin regimens for managing type I diabetes are those that combine basal and bolus insulin. Such regimens attempt to mimic the pancreas’ normal activity. Type II diabetes treatment regimens and glycemic targets should be individualized. Such treatment regimens should aim to avoid and treat hyperglycemia and reduce the risk of macrovascular and microvascular complications. The choice of the treatment regimen at the diagnosis of type II should depend on the difference between the patient’s A1C and their individual target and the presence of symptomatic hyperglycemia and/or metabolic decompensation. If not contraindicated, metformin is considered the first line of treatment in patients with type II diabetes. The presence of clinical cardiovascular disease (CVD) governs the choice of the second line agent. If the patient has clinical CVD, then we should choose an agent with demonstrated cardiovascular benefits and that includes empagliflozin, canagliflozin, and liraglutide. If the patient does not have clinical CVD, the choice of the second line agent should consider the patient’s medical history, social and work factors, their preferences and values, and the agent’s characteristics.

Keywords

Type I diabetes Type II diabetes Pharmacists A1C Antihyperglycemic agents Insulin 

References

  1. 1.
    WHO. Diabetes. 2017. Available from: http://www.who.int/mediacentre/factsheets/fs312/en/. Accessed 31 Mar 2018.
  2. 2.
    American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabtes Care. 2014;37(S1):S81–90.CrossRefGoogle Scholar
  3. 3.
    WHO. Global report on diabetes. 2016. Available from: http://apps.who.int/iris/bitstream/handle/10665/204871/9789241565257_eng.pdf?sequence=1. Accessed 31 Mar 2018.
  4. 4.
    Whiting DR, Guariguata L, Weil C, Shaw J. IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res Clin Pract. 2011;94(3):311–21.CrossRefGoogle Scholar
  5. 5.
    Diabetes Canada. Full guidelines. 2018. Available from: http://guidelines.diabetes.ca/cpg. Accessed 11 April 2018.
  6. 6.
    Kassamali A, Houle SKD, Rosenthal M, Tsuyuki RT. Case finding: the missing link in chronic disease management. Can Pharm J. 2011;144:170–171. e1.CrossRefGoogle Scholar
  7. 7.
    Harjutsalo V, Reunanen A, Tuomilehto J. Differential transmission of type 1 diabetes from diabetic fathers and mothers to their offspring. Diabetes. 2006;55:1517–24.CrossRefGoogle Scholar
  8. 8.
    Leiter LA, Barr A, Bélanger A, Lubin S, Ross SA, Tildesley HD, Diabetes Screening in Canada (DIASCAN) Study, et al. Diabetes Screening in Canada (DIASCAN) Study: prevalence of undiagnosed diabetes and glucose intolerance in family physician offices. Diabetes Care. 2001;24:1038–43.CrossRefGoogle Scholar
  9. 9.
    Diabetes Canada. Take the test. 2018. Available from: http://www.diabetes.ca/about-diabetes/take-the-test. Accessed 31 Mar 2018.
  10. 10.
    Alberti KGMM, Eckel R, Grundy S, et al. Harmonizing the metabolic syndrome. Circulation. 2009;120(16):1640–5.CrossRefGoogle Scholar
  11. 11.
    Garg SK, Rosenstock J, Ways K. Optimized Basal-bolus insulin regimens in type 1 diabetes: insulin glulisine versus regular human insulin in combination with Basal insulin glargine. Endocr Pract. 2005;11:11–7.CrossRefGoogle Scholar
  12. 12.
    Schernthaner G, Wein W, Shnawa N, Bates PC, Birkett MA. Preprandial vs. postprandial insulin lispro-a comparative crossover trial in patients with Type 1 diabetes. Diabet Med. 2004;21:279–84.CrossRefGoogle Scholar
  13. 13.
    Jovanovic L, Giammattei J, Acquistapace M, Bornstein K, Sommermann E, Pettitt DJ. Efficacy comparison between preprandial and postprandial insulin aspart administration with dose adjustment for unpredictable meal size. Clin Ther. 2004;26:1492–7.CrossRefGoogle Scholar
  14. 14.
    Fullerton B, Siebenhofer A, Jeitler K, Horvath K, Semlitsch T, Berghold A, et al. Short-acting insulin analogues versus regular human insulin for adults with type 1 diabetes mellitus. Cochrane Database Syst Rev. 2016;(6):CD012161.Google Scholar
  15. 15.
    Russell-Jones D, Bode BW, De Block C, Franek E, Heller SR, Mathieu C, et al. Fast-acting insulin aspart improves glycemic control in basal-bolus treatment for type 1 diabetes: results of a 26-week multicenter, active-controlled, treat-to-target, randomized, parallel-group trial (onset 1). Diabetes Care. 2017;40:943–50.CrossRefGoogle Scholar
  16. 16.
    Wojciechowski P, Niemczyk-Szechowska P, Olewinska E, Jaros P, Mierzejewska B, Skarżyńska-Duk J, et al. Clinical efficacy and safety of insulin aspart compared with regular human insulin in patients with type 1 and type 2 diabetes: a systematic review and metaanalysis. Pol Arch Med Wewn. 2015;125:141–51.PubMedGoogle Scholar
  17. 17.
    Bott U, Ebrahim S, Hirschberger S, Skovlund SE. Effect of the rapid-acting insulin analogue insulin aspart on quality of life and treatment satisfaction in patients with type 1 diabetes. Diabet Med. 2003;20:626–34.CrossRefGoogle Scholar
  18. 18.
    Dreyer M, Prager R, Robinson A, Busch K, Ellis G, Souhami E, et al. Efficacy and safety of insulin glulisine in patients with type 1 diabetes. Horm Metab Res. 2005;37:702–7.CrossRefGoogle Scholar
  19. 19.
    Ratner RE, Hirsch IB, Neifing JL, Garg SK, Mecca TE, Wilson CA. Less hypoglycemia with insulin glargine in intensive insulin therapy for type 1 diabetes. U.S. Study Group of Insulin Glargine in Type 1 Diabetes. Diabetes Care. 2000;23:639–43.CrossRefGoogle Scholar
  20. 20.
    Marra LP, Araujo VE, Silva TB, Diniz LM, Guerra Junior AA, Acurcio FA, et al. Clinical effectiveness and safety of analog glargine in type 1 diabetes: a systematic review and meta-analysis. Diabetes Ther. 2016;7:241–58.CrossRefGoogle Scholar
  21. 21.
    Keating GM. Insulin detemir: a review of its use in the management of diabetes mellitus. Drugs. 2012;72:2255–87.CrossRefGoogle Scholar
  22. 22.
    Agesen RM, Kristensen PL, Beck-Nielsen H, Nørgaard K, Perrild H, Christiansen JS, et al. Effect of insulin analogues on frequency of non-severe hypoglycaemia in patients with type 1 diabetes prone to severe hypoglycaemia: the HypoAna trial. Diabetes Metab. 2016;42:249–55.CrossRefGoogle Scholar
  23. 23.
    DeWitt DE, Hirsch IB. Outpatient insulin therapy in type 1 and type 2 diabetes mellitus: scientific review. JAMA. 2003;289:2254–64.CrossRefGoogle Scholar
  24. 24.
    Warren E, Weatherley-Jones E, Chilcott J, Beverley C. Systematic review and economic evaluation of a long-acting insulin analogue, insulin glargine. Health Technol Assess. 2004;8(iii):1–57.Google Scholar
  25. 25.
    Szypowska A, Golicki D, Groele L, Pańkowska E. Long-acting insulin analogue detemir compared with NPH insulin in type 1 diabetes: a systematic review and meta analysis. Pol Arch Med Wewn. 2011;121:237–46.PubMedGoogle Scholar
  26. 26.
    Home P, Bartley P, Russell-Jones D, Hanaire-Broutin H, Heeg JE, Abrams P, et al. Insulin detemir offers improved glycemic control compared with NPH insulin in people with type 1 diabetes: a randomized clinical trial. Diabetes Care. 2004;27:1081–7.CrossRefGoogle Scholar
  27. 27.
    Hadjiyianni I, Dahl D, Lacaya LB, Pollom RK, Chang CL, Ilag LL. Efficacy and safety of LY2963016 insulin glargine in patients with type 1 and type 2 diabetes previously treated with insulin glargine. Diabetes Obes Metab. 2016;18:425–9.CrossRefGoogle Scholar
  28. 28.
    Rosselli JL, Archer SN, Lindley NK, et al. U300 insulin glargine: a novel basal insulin for type 1 and type 2 diabetes. J Pharm Technol. 2015;31:234–42.CrossRefGoogle Scholar
  29. 29.
    Lamos EM, Younk LM, Davis SN. Concentrated insulins: the new basal insulins. Ther Clin Risk Manag. 2016;12:389–400.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Dailey G, Lavernia F. A review of the safety and efficacy data for insulin glargine 300units/ml, a new formulation of insulin glargine. Diabetes Obes Metab. 2015;17:1107–14.CrossRefGoogle Scholar
  31. 31.
    Matsuhisa M, Koyama M, Cheng X, Sumi M, Riddle MC, Bolli GB, et al. Sustained glycaemic control and less nocturnal hypoglycaemia with insulin glargine 300 U/mL compared with glargine 100 U/mL in Japanese adults with type 1 diabetes (EDITION JP 1 randomised 12-month trial including 6-month extension). Diabetes Res Clin Pract. 2016;122:133–40.CrossRefGoogle Scholar
  32. 32.
    Wang F, Zassman S, Goldberg PA. rDNA insulin glargine U300 – a critical appraisal. Diabetes Metab Syndr Obes. 2016;9:425–41.CrossRefGoogle Scholar
  33. 33.
    Heise T, Hermanski L, Nosek L, Feldman A, Rasmussen S, Haahr H. Insulin degludec: four times lower pharmacodynamic variability than insulin glargine under steady-state conditions in type 1 diabetes. Diabetes Obes Metab. 2012;14:859–64.CrossRefGoogle Scholar
  34. 34.
    Kerlan V, Gouet D, Marre M, Renard É. Use of insulin degludec, a new basal insulin with an ultra-long duration of action, in basal-bolus therapy in type 1 and type 2 diabetes. Annal Endocrinol. 2013;74:487–90.CrossRefGoogle Scholar
  35. 35.
    Russell-Jones D, Gall MA, Niemeyer M, Diamant M, Del Prato S. Insulin degludec results in lower rates of nocturnal hypoglycaemia and fasting plasma glucose vs. insulin glargine: a meta-analysis of seven clinical trials. Nutr Metab Cardiovasc Dis. 2015;25:898–905.CrossRefGoogle Scholar
  36. 36.
    Heller S, Buse J, Fisher M, Garg S, Marre M, Merker L, et al. Insulin degludec, an ultra-longacting basal insulin, versus insulin glargine in basal-bolus treatment with mealtime insulin aspart in type 1 diabetes (BEGIN Basal-Bolus Type 1): a phase 3, randomised, open-label, treat-to-target non-inferiority trial. Lancet. 2012;379:1489–97.CrossRefGoogle Scholar
  37. 37.
    Bode BW, Buse JB, Fisher M, Garg SK, Marre M, Merker L, et al. Insulin degludec improves glycaemic control with lower nocturnal hypoglycaemia risk than insulin glargine in basalbolus treatment with mealtime insulin aspart in Type 1 diabetes (BEGIN(®) Basal-Bolus Type 1): 2-year results of a randomized clinical trial. Diabet Med. 2013;30:1293–7.CrossRefGoogle Scholar
  38. 38.
    Dzygalo K, Golicki D, Kowalska A, Szypowska A. The beneficial effect of insulin degludec on nocturnal hypoglycaemia and insulin dose in type 1 diabetic patients: a systematic review and meta-analysis of randomised trials. Acta Diabetol. 2014;52:231–8.CrossRefGoogle Scholar
  39. 39.
    Davies M, Sasaki T, Gross JL, Bantwal G, Ono Y, Nishida T, et al. Comparison of insulin degludec with insulin detemir in type 1 diabetes: a 1-year treat-to-target trial. Diabetes Obes Metab. 2016;18:96–9.CrossRefGoogle Scholar
  40. 40.
    Hirsch IB, Franek E, Mersebach H, Bardtrum L, Hermansen K. Safety and efficacy of insulin degludec/insulin aspart with bolus mealtime insulin aspart compared with standard basalbolus treatment in people with Type 1 diabetes: 1-year results from a randomized clinical trial (BOOST® T1). Diabet Med. 2016;34:167–73.CrossRefGoogle Scholar
  41. 41.
    Gaede P, Lund-Andersen H, Parving HH, Pedersen O. Effect of a multifactorial intervention on mortality in type 2 diabetes. N Engl J Med. 2008;358:580–91.CrossRefGoogle Scholar
  42. 42.
    The Diabetes Control and Complications Trial Research Group. The relationship of glycemic exposure (HbA1c) to the risk of development and progression of retinopathy in the diabetes control and complications trial. Diabetes. 1995;44:968–83.CrossRefGoogle Scholar
  43. 43.
    Action to Control Cardiovascular Risk in Diabetes Follow-On (ACCORDION) Eye Study Group and the Action to Control Cardiovascular Risk in Diabetes Follow-On (ACCORDION) Study Group. Persistent effects of intensive glycemic control on retinopathy in type 2 diabetes in the Action to Control Cardiovascular Risk in Diabetes (ACCORD) follow-on study. Diabetes Care. 2016;39:1089–100.CrossRefGoogle Scholar
  44. 44.
    ADVANCE Collaborative Group, Patel A, MacMahon S, et al. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med. 2008;358:2560–72.CrossRefGoogle Scholar
  45. 45.
    The ACCORD Study Group and ACCORD Eye Study Group. Effects of medical therapies on retinopathy progression in type 2 diabetes. New Engl J Med. 2010;363:233–44.CrossRefGoogle Scholar
  46. 46.
    Diabetes Canada. Examples of insulin initiation and titration regimens in people with type 2 diabetes. 2018. Available from: http://guidelines.diabetes.ca/docs/cpg/Appendix-9.pdf. Accessed 12 April 2018.
  47. 47.
    The government of British Columbia. BC Guidelines. 2015. Available from: https://www2.gov.bc.ca/assets/gov/health/practitioner-pro/bc-guidelines/dc_appe.pdf. Accessed 12 April 2018.
  48. 48.
    Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373:2117–28.CrossRefGoogle Scholar
  49. 49.
    Neal B, Perkovic V, Mahaffey KW, de Zeeuw D, Fulcher G, Erondu N, et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med. 2017;377:644–57.CrossRefGoogle Scholar
  50. 50.
    Marso SP, Daniels GH, Brown-Frandsen K, Kristensen P, Mann JF, Nauck MA, et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2016;375:311–22.CrossRefGoogle Scholar
  51. 51.
    Khardori R, Nguyen DD. Glucose control and cardiovascular outcomes: reorienting approach. Front Endocrinol. 2012;3:110.  https://doi.org/10.3389/fendo.2012.00110.CrossRefGoogle Scholar
  52. 52.
    Diabetes Canada. For all patients with diabetes: ABCDEs. 2018. Available from: http://guidelines.diabetes.ca/reduce-complications/abcdes. Accessed 23 May 2018.
  53. 53.
    Al Hamarneh YN, Houle SKD, Padwal R, Tsuyuki RT. Hypertension Canada’s 2016 Canadian hypertension education program guidelines for pharmacists: an update. Can Pharm J. 2016;149(6):337–44.CrossRefGoogle Scholar
  54. 54.
    Al Hamarneh YN, Siemens RL, Townsend KJ. Top 10 things pharmacists should consider when they interact with patients with type 2 diabetes. Can J Diabetes. 2017;41(6):567–70.CrossRefGoogle Scholar
  55. 55.
    Donald M, King-Sheir K, Tsuyuki RT, Al Hamarneh YN, Jones CA, Manns B, et al. Patient, family physician and community pharmacist perspectives on expanded pharmacy scope of practice: a qualitative study. CMAJ Open. 2017;5(1):E205–12.CrossRefGoogle Scholar
  56. 56.
    Diabetes Canada. Sick-day medication list. 2018. Available from: http://guidelines.diabetes.ca/docs/cpg/Appendix-8.pdf. Accessed 24 April 2018.
  57. 57.
    McCarter RJ, Hempe JM, Chalew SA. Mean blood glucose and biological variation have greater influence on HbA1c levels than glucose instability: an analysis of data from the diabetes control and complications trial. Diabetes Care. 2006;29:352–5.CrossRefGoogle Scholar
  58. 58.
    Kirk JK, Stegner J. Self-monitoring of blood glucose: practical aspects. J Diabetes Sci Technol. 2010;4(2):435–9.CrossRefGoogle Scholar
  59. 59.
    Diabetes Canada. Therapeutic considerations for renal impairment. 2018. Available from: http://guidelines.diabetes.ca/docs/cpg/Appendix-7.pdf. Accessed 16 April 2018.
  60. 60.
    Al Hamarneh YN, Tsuyuki RT, Jones CA, Manns B, Tonelli M, Scott-Douglass N, et al. Effectiveness of pharmacist interventions on cardiovascular risk in patients With CKD: a subgroup analysis of the randomized controlled RxEACH trial. Am J Kidney Dis. 2018;7:42–51.CrossRefGoogle Scholar
  61. 61.
    Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int Suppl. 2013;3(1):1–150.CrossRefGoogle Scholar
  62. 62.
    Hepburn DA. Symptoms of hypoglycaemia. In: Frier BM, Fisher BM, editors. Hypoglycaemia and diabetes: clinical and physiological aspects. London: Edward Arnold; 1993. p. 93–103.Google Scholar
  63. 63.
    Fowler MJ. Microvascular and macrovascular complications of diabetes. Clinical Diabetes. 2011;29(3):116–22.CrossRefGoogle Scholar
  64. 64.
    WHO. About diabetes. 2018. Available from: http://www.who.int/diabetes/action_online/basics/en/index3.html. Accessed 24 April 2018.
  65. 65.
    Diabetes Canada. Diabetes and foot care: a checklist. 2018. Available from: http://guidelines.diabetes.ca/docs/cpg/Appendix-13.pdf. Accessed 23 May 2018.

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Yazid N. Al Hamarneh
    • 1
    Email author
  • Rick L. Siemens
    • 2
  • Kendra J. Townsend
    • 3
  • Ross T. Tsuyuki
    • 1
  1. 1.University of Alberta, Department of Medicine, Faculty of Medicine and DentistryEdmontonCanada
  2. 2.London DrugsLethbridgeCanada
  3. 3.Prairie Vascular Research Inc., Interventional Cardiac Research, Regina General HospitalReginaCanada

Personalised recommendations