Advertisement

Genetic Predisposition to Non-Hodgkin Lymphoma

  • Oskar A. HaasEmail author
  • Arndt Borkhardt
Chapter

Abstract

Lymphoma develops in children commonly as an unfortunate consequence of a genetically and developmentally disturbed immune system that is incapable to appropriately adapt to and cope with certain environmental factors and to ward off specific infectious agents. According to current estimates, already well-defined single-gene defects affect up to two-thirds of children with non-Hodgkin lymphomas (NHL). Such mutations disrupt primarily components that are part of various immune and functionally closely related DNA repair pathways. Although many of them concur with clinically recognizable physical abnormalities and hematopoietic disturbances, their enormous heterogeneity and ensuing individual rarity, and their often-incomplete penetrance and striking variable expressivity together with incomplete family histories, small families and the possibility of de novo mutations pose nevertheless a considerable diagnostic challenge, which nowadays can be approached with appropriate screening methods and sequencing tools. Considering the increasing interest in germline defects that predispose to childhood malignancies, we believe that the implementation and embedment of systematic analyses in the respective lymphoma treatment studies would be an especially rewarding endeavor, since the knowledge of their presence can guide the clinical management of affected patients; enable carrier screening, family counseling, and planning; as well as facilitate clinical surveillance and the application of preventive measures.

Keywords

Genetic predisposition Germline Mutation Immunodeficiency DNA repair Counseling 

Notes

Acknowledgment

The author(s) acknowledge the networking support by the COST Action CA16223 “LEukaemia GENe Discovery by data sharing, mining and collaboration (LEGEND)” as well as the “IBFM Leukemia & Lymphoma Genetic Predisposition Committee.” We also thank Fikret Rifatbegovic for help with designing and drawing the figures.

References

  1. 1.
    Arico M, Mussolin L, Carraro E, Buffardi S, Santoro N, D’Angelo P, et al. Non-Hodgkin lymphoma in children with an associated inherited condition: a retrospective analysis of the Associazione Italiana Ematologia Oncologia Pediatrica (AIEOP). Pediatr Blood Cancer. 2015;62(10):1782–9.  https://doi.org/10.1002/pbc.25565.CrossRefPubMedGoogle Scholar
  2. 2.
    Attarbaschi A, Carraro E, Abla O, Barzilai-Birenboim S, Bomken S, Brugieres L, et al. Non-Hodgkin lymphoma and pre-existing conditions: spectrum, clinical characteristics and outcome in 213 children and adolescents. Haematologica. 2016;101(12):1581–91.  https://doi.org/10.3324/haematol.2016.147116.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Vijai J, Wang Z, Berndt SI, Skibola CF, Slager SL, de Sanjose S, et al. A genome-wide association study of marginal zone lymphoma shows association to the HLA region. Nat Commun. 2015;6(1):5751.  https://doi.org/10.1038/ncomms6751.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Swerdlow SH, Campo E, Pileri SA, Harris NL, Stein H, Siebert R, et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood. 2016;127(20):2375–90.  https://doi.org/10.1182/blood-2016-01-643569.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Tran H, Nourse J, Hall S, Green M, Griffiths L, Gandhi MK. Immunodeficiency-associated lymphomas. Blood Rev. 2008;22(5):261–81.  https://doi.org/10.1016/j.blre.2008.03.009.CrossRefPubMedGoogle Scholar
  6. 6.
    Straus SE, Jaffe ES, Puck JM, Dale JK, Elkon KB, Rosen-Wolff A, et al. The development of lymphomas in families with autoimmune lymphoproliferative syndrome with germline Fas mutations and defective lymphocyte apoptosis. Blood. 2001;98(1):194–200.CrossRefGoogle Scholar
  7. 7.
    Clementi R, Dagna L, Dianzani U, Dupre L, Dianzani I, Ponzoni M, et al. Inherited perforin and Fas mutations in a patient with autoimmune lymphoproliferative syndrome and lymphoma. N Engl J Med. 2004;351(14):1419–24.  https://doi.org/10.1056/NEJMoa041432.CrossRefPubMedGoogle Scholar
  8. 8.
    Alexander DD, Mink PJ, Adami HO, Chang ET, Cole P, Mandel JS, et al. The non-Hodgkin lymphomas: a review of the epidemiologic literature. Int J Cancer. 2007;120 Suppl 12(S12):1–39.  https://doi.org/10.1002/ijc.22719.CrossRefGoogle Scholar
  9. 9.
    Cunningham-Rundles C. The many faces of common variable immunodeficiency. Hematology Am Soc Hematol Educ Program. 2012;2012:301–5.  https://doi.org/10.1182/asheducation-2012.1.301.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Morton LM, Slager SL, Cerhan JR, Wang SS, Vajdic CM, Skibola CF, et al. Etiologic heterogeneity among non-Hodgkin lymphoma subtypes: the InterLymph Non-Hodgkin Lymphoma Subtypes Project. J Natl Cancer Inst Monogr. 2014;2014(48):130–44.  https://doi.org/10.1093/jncimonographs/lgu013.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Osinska I, Popko K, Demkow U. Perforin: an important player in immune response. Cent Eur J Immunol. 2014;39(1):109–15.  https://doi.org/10.5114/ceji.2014.42135.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Skibola CF, Curry JD, Nieters A. Genetic susceptibility to lymphoma. Haematologica. 2007;92(7):960–9.CrossRefGoogle Scholar
  13. 13.
    Similuk M, Rao VK, Churpek J, Lenardo M. Predispositions to lymphoma: a practical review for Genetic Counselors. J Genet Couns. 2016;25(6):1157–70.  https://doi.org/10.1007/s10897-016-9979-0.CrossRefPubMedGoogle Scholar
  14. 14.
    Sharapova SO, Fedorova AS, Pashchenko OE, Vahliarskaya SS, Guryanova IE, Migas AA, et al. Novel mutations in SH2D1A gene in X-linked lymphoproliferative syndrome, diagnosed after B-cell non-Hodgkin lymphoma. J Pediatr Hematol Oncol. 2017;39(4):e203–e6.  https://doi.org/10.1097/MPH.0000000000000815.CrossRefPubMedGoogle Scholar
  15. 15.
    Jongmans MC, Loeffen JL, Waanders E, Hoogerbrugge PM, Ligtenberg MJ, Kuiper RP, et al. Recognition of genetic predisposition in pediatric cancer patients: an easy-to-use selection tool. Eur J Med Genet. 2016;59(3):116–25.  https://doi.org/10.1016/j.ejmg.2016.01.008.CrossRefPubMedGoogle Scholar
  16. 16.
    Seidemann K, Tiemann M, Henze G, Sauerbrey A, Muller S, Reiter A. Therapy for non-Hodgkin lymphoma in children with primary immunodeficiency: analysis of 19 patients from the BFM trials. Med Pediatr Oncol. 1999;33(6):536–44.CrossRefGoogle Scholar
  17. 17.
    Bienemann K, Burkhardt B, Modlich S, Meyer U, Moricke A, Bienemann K, et al. Promising therapy results for lymphoid malignancies in children with chromosomal breakage syndromes (Ataxia telangiectasia or Nijmegen-breakage syndrome): a retrospective survey. Br J Haematol. 2011;155(4):468–76.  https://doi.org/10.1111/j.1365-2141.2011.08863.x.CrossRefPubMedGoogle Scholar
  18. 18.
    Kotlarz D, Beier R, Murugan D, Diestelhorst J, Jensen O, Boztug K, et al. Loss of interleukin-10 signaling and infantile inflammatory bowel disease: implications for diagnosis and therapy. Gastroenterology. 2012;143(2):347–55.  https://doi.org/10.1053/j.gastro.2012.04.045.CrossRefPubMedGoogle Scholar
  19. 19.
    Chihara D, Nastoupil LJ, Williams JN, Lee P, Koff JL, Flowers CR. New insights into the epidemiology of non-Hodgkin lymphoma and implications for therapy. Expert Rev Anticancer Ther. 2015;15(5):531–44.  https://doi.org/10.1586/14737140.2015.1023712.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Hampel H, Bennett RL, Buchanan A, Pearlman R, Wiesner GL, Guideline Development Group ACoMGaGPPaGCaNSoGCPGC. A practice guideline from the American College of Medical Genetics and Genomics and the National Society of Genetic Counselors: referral indications for cancer predisposition assessment. Genet Med. 2015;17(1):70–87.CrossRefGoogle Scholar
  21. 21.
    Wolfe Schneider K, Jasperson K. Unique genetic counseling considerations in the pediatric oncology setting. Curr Genet Med Rep. 2015;3(2):65–73.  https://doi.org/10.1007/s40142-015-0064-z.CrossRefGoogle Scholar
  22. 22.
    Walsh MF, Chang VY, Kohlmann WK, Scott HS, Cunniff C, Bourdeaut F, et al. Recommendations for childhood cancer screening and surveillance in DNA repair disorders. Clin Cancer Res. 2017;23(11):e23–31.  https://doi.org/10.1158/1078-0432.CCR-17-0465.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Cerhan JR, Slager SL. Familial predisposition and genetic risk factors for lymphoma. Blood. 2015;126(20):2265–73.  https://doi.org/10.1182/blood-2015-04-537498.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Desai AV, Perpich M, Godley LA. Clinical assessment and diagnosis of Germline predisposition to hematopoietic malignancies: the University of Chicago Experience. Front Pediatr. 2017;5:252.  https://doi.org/10.3389/fped.2017.00252.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Bakry D, Aronson M, Durno C, Rimawi H, Farah R, Alharbi QK, et al. Genetic and clinical determinants of constitutional mismatch repair deficiency syndrome: report from the constitutional mismatch repair deficiency consortium. Eur J Cancer. 2014;50(5):987–96.  https://doi.org/10.1016/j.ejca.2013.12.005.CrossRefPubMedGoogle Scholar
  26. 26.
    Ripperger T, Beger C, Rahner N, Sykora KW, Bockmeyer CL, Lehmann U, et al. Constitutional mismatch repair deficiency and childhood leukemia/lymphoma – report on a novel biallelic MSH6 mutation. Haematologica. 2010;95(5):841–4.  https://doi.org/10.3324/haematol.2009.015503.CrossRefPubMedGoogle Scholar
  27. 27.
    Ripperger T, Bielack SS, Borkhardt A, Brecht IB, Burkhardt B, Calaminus G, et al. Childhood cancer predisposition syndromes-a concise review and recommendations by the Cancer Predisposition Working Group of the Society for Pediatric Oncology and Hematology. Am J Med Genet A. 2017;173(4):1017–37.  https://doi.org/10.1002/ajmg.a.38142.CrossRefPubMedGoogle Scholar
  28. 28.
    Gladkowska-Dura M, Dzierzanowska-Fangrat K, Dura WT, van Krieken JH, Chrzanowska KH, van Dongen JJ, et al. Unique morphological spectrum of lymphomas in Nijmegen breakage syndrome (NBS) patients with high frequency of consecutive lymphoma formation. J Pathol. 2008;216(3):337–44.  https://doi.org/10.1002/path.2418.CrossRefPubMedGoogle Scholar
  29. 29.
    Shapiro RS. Malignancies in the setting of primary immunodeficiency: implications for hematologists/oncologists. Am J Hematol. 2011;86(1):48–55.  https://doi.org/10.1002/ajh.21903.CrossRefPubMedGoogle Scholar
  30. 30.
    Seidemann K, Henze G, Beck JD, Sauerbrey A, Kuhl J, Mann G, et al. Non-Hodgkin’s lymphoma in pediatric patients with chromosomal breakage syndromes (AT and NBS): experience from the BFM trials. Ann Oncol. 2000;11(Suppl 1):141–5.CrossRefGoogle Scholar
  31. 31.
    Rothblum-Oviatt C, Wright J, Lefton-Greif MA, McGrath-Morrow SA, Crawford TO, Lederman HM. Ataxia telangiectasia: a review. Orphanet J Rare Dis. 2016;11(1):159.  https://doi.org/10.1186/s13023-016-0543-7.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Suarez F, Mahlaoui N, Canioni D, Andriamanga C, Dubois d’Enghien C, Brousse N, et al. Incidence, presentation, and prognosis of malignancies in ataxia-telangiectasia: a report from the French national registry of primary immune deficiencies. J Clin Oncol. 2015;33(2):202–8.  https://doi.org/10.1200/JCO.2014.56.5101.CrossRefPubMedGoogle Scholar
  33. 33.
    Chrzanowska KH, Gregorek H, Dembowska-Baginska B, Kalina MA, Digweed M. Nijmegen breakage syndrome (NBS). Orphanet J Rare Dis. 2012;7(1):13.  https://doi.org/10.1186/1750-1172-7-13.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Dembowska-Baginska B, Perek D, Brozyna A, Wakulinska A, Olczak-Kowalczyk D, Gladkowska-Dura M, et al. Non-Hodgkin lymphoma (NHL) in children with Nijmegen breakage syndrome (NBS). Pediatr Blood Cancer. 2009;52(2):186–90.  https://doi.org/10.1002/pbc.21789.CrossRefPubMedGoogle Scholar
  35. 35.
    Ripperger T, Schlegelberger B. Acute lymphoblastic leukemia and lymphoma in the context of constitutional mismatch repair deficiency syndrome. Eur J Med Genet. 2016;59(3):133–42.  https://doi.org/10.1016/j.ejmg.2015.12.014.CrossRefPubMedGoogle Scholar
  36. 36.
    Alexander TB, McGee RB, Kaye EC, McCarville MB, Choi JK, Cavender CP, et al. Metachronous T-lymphoblastic lymphoma and Burkitt lymphoma in a child with constitutional mismatch repair deficiency syndrome. Pediatr Blood Cancer. 2016;63(8):1454–6.  https://doi.org/10.1002/pbc.25989.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Lavoine N, Colas C, Muleris M, Bodo S, Duval A, Entz-Werle N, et al. Constitutional mismatch repair deficiency syndrome: clinical description in a French cohort. J Med Genet. 2015;52(11):770–8.  https://doi.org/10.1136/jmedgenet-2015-103299.CrossRefPubMedGoogle Scholar
  38. 38.
    Tichy A, Vavrova J, Pejchal J, Rezacova M. Ataxia-telangiectasia mutated kinase (ATM) as a central regulator of radiation-induced DNA damage response. Acta Med (Hradec Kralove). 2010;53(1):13–7.CrossRefGoogle Scholar
  39. 39.
    Taylor AM, Metcalfe JA, Thick J, Mak YF. Leukemia and lymphoma in ataxia telangiectasia. Blood. 1996;87(2):423–38.PubMedGoogle Scholar
  40. 40.
    van Os NJ, Roeleveld N, Weemaes CM, Jongmans MC, Janssens GO, Taylor AM, et al. Health risks for ataxia-telangiectasia mutated heterozygotes: a systematic review, meta-analysis and evidence-based guideline. Clin Genet. 2016;90(2):105–17.  https://doi.org/10.1111/cge.12710.CrossRefPubMedGoogle Scholar
  41. 41.
    Schuetz JM, MaCarthur AC, Leach S, Lai AS, Gallagher RP, Connors JM, et al. Genetic variation in the NBS1, MRE11, RAD50 and BLM genes and susceptibility to non-Hodgkin lymphoma. BMC Med Genet. 2009;10:117.  https://doi.org/10.1186/1471-2350-10-117.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Tabori U, Hansford JR, Achatz MI, Kratz CP, Plon SE, Frebourg T, et al. Clinical management and tumor surveillance recommendations of inherited mismatch repair deficiency in childhood. Clin Cancer Res. 2017;23(11):e32–e7.  https://doi.org/10.1158/1078-0432.CCR-17-0574.CrossRefPubMedGoogle Scholar
  43. 43.
    Durno CA, Sherman PM, Aronson M, Malkin D, Hawkins C, Bakry D, et al. Phenotypic and genotypic characterisation of biallelic mismatch repair deficiency (BMMR-D) syndrome. Eur J Cancer. 2015;51(8):977–83.  https://doi.org/10.1016/j.ejca.2015.02.008.CrossRefPubMedGoogle Scholar
  44. 44.
    Wimmer K, Kratz CP, Vasen HF, Caron O, Colas C, Entz-Werle N, et al. Diagnostic criteria for constitutional mismatch repair deficiency syndrome: suggestions of the European consortium ‘care for CMMRD’ (C4CMMRD). J Med Genet. 2014;51(6):355–65.  https://doi.org/10.1136/jmedgenet-2014-102284.CrossRefPubMedGoogle Scholar
  45. 45.
    Vasen HF, Ghorbanoghli Z, Bourdeaut F, Cabaret O, Caron O, Duval A, et al. Guidelines for surveillance of individuals with constitutional mismatch repair-deficiency proposed by the European consortium “care for CMMR-D” (C4CMMR-D). J Med Genet. 2014;51(5):283–93.  https://doi.org/10.1136/jmedgenet-2013-102238.CrossRefPubMedGoogle Scholar
  46. 46.
    Wimmer K, Kratz CP. Constitutional mismatch repair-deficiency syndrome. Haematologica. 2010;95(5):699–701.  https://doi.org/10.3324/haematol.2009.021626.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Picard C, Bobby Gaspar H, Al-Herz W, Bousfiha A, Casanova JL, Chatila T, et al. International Union of Immunological Societies: 2017 Primary Immunodeficiency Diseases Committee Report on Inborn Errors of Immunity. J Clin Immunol. 2018;38(1):96–128.  https://doi.org/10.1007/s10875-017-0464-9.CrossRefPubMedGoogle Scholar
  48. 48.
    Bousfiha A, Jeddane L, Picard C, Ailal F, Bobby Gaspar H, Al-Herz W, et al. The 2017 IUIS phenotypic classification for primary Immunodeficiencies. J Clin Immunol. 2018;38(1):129–43.  https://doi.org/10.1007/s10875-017-0465-8.CrossRefPubMedGoogle Scholar
  49. 49.
    Mayor PC, Eng KH, Singel KL, Abrams SI, Odunsi K, Moysich KB, et al. Cancer in primary immunodeficiency diseases: cancer incidence in the United States Immune Deficiency Network Registry. J Allergy Clin Immunol. 2018;141(3):1028–35.  https://doi.org/10.1016/j.jaci.2017.05.024.CrossRefPubMedGoogle Scholar
  50. 50.
    Verhoeven D, Stoppelenburg AJ, Meyer-Wentrup F, Boes M. Increased risk of hematologic malignancies in primary immunodeficiency disorders: opportunities for immunotherapy. Clin Immunol. 2018;190:22–31.  https://doi.org/10.1016/j.clim.2018.02.007.CrossRefPubMedGoogle Scholar
  51. 51.
    de Jong D, Roemer MG, Chan JK, Goodlad J, Gratzinger D, Chadburn A, et al. B-cell and classical Hodgkin lymphomas associated with immunodeficiency: 2015 SH/EAHP Workshop Report-Part 2. Am J Clin Pathol. 2017;147(2):153–70.  https://doi.org/10.1093/ajcp/aqw216.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Latour S, Winter S. Inherited Immunodeficiencies with high predisposition to Epstein–Barr virus-driven lymphoproliferative diseases. Front Immunol. 2018;9:1103.  https://doi.org/10.3389/fimmu.2018.01103.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Arjunaraja S, Angelus P, Su HC, Snow AL. Impaired control of Epstein-Barr virus infection in B-cell expansion with NF-kappaB and T-cell Anergy Disease. Front Immunol. 2018;9:198.  https://doi.org/10.3389/fimmu.2018.00198.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Worth AJ, Houldcroft CJ, Booth C. Severe Epstein-Barr virus infection in primary immunodeficiency and the normal host. Br J Haematol. 2016;175(4):559–76.  https://doi.org/10.1111/bjh.14339.CrossRefPubMedGoogle Scholar
  55. 55.
    Parvaneh N, Filipovich AH, Borkhardt A. Primary immunodeficiencies predisposed to Epstein-Barr virus-driven haematological diseases. Br J Haematol. 2013;162(5):573–86.  https://doi.org/10.1111/bjh.12422.CrossRefPubMedGoogle Scholar
  56. 56.
    Voskoboinik I, Trapani JA. Perforinopathy: a spectrum of human immune disease caused by defective perforin delivery or function. Front Immunol. 2013;4:441.  https://doi.org/10.3389/fimmu.2013.00441.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Trapani JA, Thia KY, Andrews M, Davis ID, Gedye C, Parente P, et al. Human perforin mutations and susceptibility to multiple primary cancers. Oncoimmunology. 2013;2(4):e24185.  https://doi.org/10.4161/onci.24185.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Chaudhry MS, Gilmour KC, House IG, Layton M, Panoskaltsis N, Sohal M, et al. Missense mutations in the perforin (PRF1) gene as a cause of hereditary cancer predisposition. Oncoimmunology. 2016;5(7):e1179415.  https://doi.org/10.1080/2162402X.2016.1179415.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Cetica V, Sieni E, Pende D, Danesino C, De Fusco C, Locatelli F, et al. Genetic predisposition to hemophagocytic lymphohistiocytosis: report on 500 patients from the Italian registry. J Allergy Clin Immunol. 2016;137(1):188–96 e4.  https://doi.org/10.1016/j.jaci.2015.06.048.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Ciambotti B, Mussolin L, d’Amore ES, Pillon M, Sieni E, Coniglio ML, et al. Monoallelic mutations of the perforin gene may represent a predisposing factor to childhood anaplastic large cell lymphoma. J Pediatr Hematol Oncol. 2014;36(6):e359–65.  https://doi.org/10.1097/MPH.0000000000000073.CrossRefPubMedGoogle Scholar
  61. 61.
    Clementi R, Locatelli F, Dupre L, Garaventa A, Emmi L, Bregni M, et al. A proportion of patients with lymphoma may harbor mutations of the perforin gene. Blood. 2005;105(11):4424–8.  https://doi.org/10.1182/blood-2004-04-1477.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Cannella S, Santoro A, Bruno G, Pillon M, Mussolin L, Mangili G, et al. Germline mutations of the perforin gene are a frequent occurrence in childhood anaplastic large cell lymphoma. Cancer. 2007;109(12):2566–71.  https://doi.org/10.1002/cncr.22718.CrossRefPubMedGoogle Scholar
  63. 63.
    Manso R, Rodriguez-Pinilla SM, Lombardia L, Ruiz de Garibay G, Del Mar Lopez M, Requena L, et al. An A91V SNP in the perforin gene is frequently found in NK/T-cell lymphomas. PLoS One. 2014;9(3):e91521.  https://doi.org/10.1371/journal.pone.0091521.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Panchal N, Booth C, Cannons JL, Schwartzberg PL. X-linked Lymphoproliferative disease type 1: a clinical and molecular perspective. Front Immunol. 2018;9:666.  https://doi.org/10.3389/fimmu.2018.00666.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Candotti F. Clinical manifestations and pathophysiological mechanisms of the Wiskott-Aldrich syndrome. J Clin Immunol. 2018;38(1):13–27.  https://doi.org/10.1007/s10875-017-0453-z.CrossRefPubMedGoogle Scholar
  66. 66.
    Buchbinder D, Nugent DJ, Fillipovich AH. Wiskott-Aldrich syndrome: diagnosis, current management, and emerging treatments. Appl Clin Genet. 2014;7:55–66.  https://doi.org/10.2147/TACG.S58444.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Massaad MJ, Ramesh N, Geha RS. Wiskott-Aldrich syndrome: a comprehensive review. Ann N Y Acad Sci. 2013;1285:26–43.  https://doi.org/10.1111/nyas.12049.CrossRefPubMedGoogle Scholar
  68. 68.
    Ochs HD, Filipovich AH, Veys P, Cowan MJ, Kapoor N. Wiskott-Aldrich syndrome: diagnosis, clinical and laboratory manifestations, and treatment. Biol Blood Marrow Transplant. 2009;15(1 Suppl):84–90.  https://doi.org/10.1016/j.bbmt.2008.10.007.CrossRefPubMedGoogle Scholar
  69. 69.
    Blundell MP, Worth A, Bouma G, Thrasher AJ. The Wiskott-Aldrich syndrome: the actin cytoskeleton and immune cell function. Dis Markers. 2010;29(3-4):157–75.  https://doi.org/10.3233/DMA-2010-0735.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Glocker EO, Kotlarz D, Boztug K, Gertz EM, Schaffer AA, Noyan F, et al. Inflammatory bowel disease and mutations affecting the interleukin-10 receptor. N Engl J Med. 2009;361(21):2033–45.  https://doi.org/10.1056/NEJMoa0907206.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Shouval DS, CL Ebens, R Murchie, K McCann, R Rabah, C Klein, et al. Large B-cell lymphoma in an adolescent patient with Iinterleukin-10 receptor deficiency and history of infantile inflammatory bowel disease. J Pediatr Gastroenterol Nutr. 2016;63(1):e15–e17.  https://doi.org/10.1097/MPG.0000000000000532.CrossRefGoogle Scholar
  72. 72.
    Neven B, Mamessier E, Bruneau J, Kaltenbach S, Kotlarz D, Suarez F, et al. A Mendelian predisposition to B-cell lymphoma caused by IL-10R deficiency. Blood. 2013;122(23):3713–22.  https://doi.org/10.1182/blood-2013-06-508267.CrossRefPubMedGoogle Scholar
  73. 73.
    Kandiel A, Fraser AG, Korelitz BI, Brensinger C, Lewis JD. Increased risk of lymphoma among inflammatory bowel disease patients treated with azathioprine and 6-mercaptopurine. Gut. 2005;54(8):1121–5.  https://doi.org/10.1136/gut.2004.049460.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Mitchell KJ. What is complex about complex disorders? Genome Biol. 2012;13(1):237.  https://doi.org/10.1186/gb-2012-13-1-237.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Cerhan JR. Host genetics in follicular lymphoma. Best Pract Res Clin Haematol. 2011;24(2):121–34.  https://doi.org/10.1016/j.beha.2011.02.004.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Knapke S, Nagarajan R, Correll J, Kent D, Burns K. Hereditary cancer risk assessment in a pediatric oncology follow-up clinic. Pediatr Blood Cancer. 2012;58(1):85–9.  https://doi.org/10.1002/pbc.23283.CrossRefPubMedGoogle Scholar
  77. 77.
    Zhang J, Walsh MF, Wu G, Edmonson MN, Gruber TA, Easton J, et al. Germline mutations in predisposition genes in pediatric cancer. N Engl J Med. 2015;373(24):2336–46.  https://doi.org/10.1056/NEJMoa1508054.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Mack TM, Cozen W, Shibata DK, Weiss LM, Nathwani BN, Hernandez AM, et al. Concordance for Hodgkin’s disease in identical twins suggesting genetic susceptibility to the young-adult form of the disease. N Engl J Med. 1995;332(7):413–8.  https://doi.org/10.1056/NEJM199502163320701.CrossRefPubMedGoogle Scholar
  79. 79.
    Crump C, Sundquist K, Sieh W, Winkleby MA, Sundquist J. Perinatal and family risk factors for Hodgkin lymphoma in childhood through young adulthood. Am J Epidemiol. 2012;176(12):1147–58.  https://doi.org/10.1093/aje/kws212.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Friedman DL, Kadan-Lottick NS, Whitton J, Mertens AC, Yasui Y, Liu Y, et al. Increased risk of cancer among siblings of long-term childhood cancer survivors: a report from the childhood cancer survivor study. Cancer Epidemiol Biomark Prev. 2005;14(8):1922–7.  https://doi.org/10.1158/1055-9965.EPI-05-0066.CrossRefGoogle Scholar
  81. 81.
    Lu Y, Sullivan-Halley J, Cozen W, Chang ET, Henderson K, Ma H, et al. Family history of haematopoietic malignancies and non-Hodgkin’s lymphoma risk in the California teachers study. Br J Cancer. 2009;100(3):524–6.  https://doi.org/10.1038/sj.bjc.6604881.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Goldgar DE, Easton DF, Cannon-Albright LA, Skolnick MH. Systematic population-based assessment of cancer risk in first-degree relatives of cancer probands. J Natl Cancer Inst. 1994;86(21):1600–8.  https://doi.org/10.1093/jnci/86.21.1600.CrossRefPubMedGoogle Scholar
  83. 83.
    Goldin LR, McMaster ML, Ter-Minassian M, Saddlemire S, Harmsen B, Lalonde G, et al. A genome screen of families at high risk for Hodgkin lymphoma: evidence for a susceptibility gene on chromosome 4. J Med Genet. 2005;42(7):595–601.  https://doi.org/10.1136/jmg.2004.027433.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Skibola CF, Bracci PM, Nieters A, Brooks-Wilson A, de Sanjose S, Hughes AM, et al. Tumor necrosis factor (TNF) and lymphotoxin-alpha (LTA) polymorphisms and risk of non-Hodgkin lymphoma in the InterLymph Consortium. Am J Epidemiol. 2010;171(3):267–76.  https://doi.org/10.1093/aje/kwp383.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Nieters A, Conde L, Slager SL, Brooks-Wilson A, Morton L, Skibola DR, et al. PRRC2A and BCL2L11 gene variants influence risk of non-Hodgkin lymphoma: results from the InterLymph consortium. Blood. 2012;120(23):4645–8.  https://doi.org/10.1182/blood-2012-05-427989.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Kuhlen M, Borkhardt A. Cancer susceptibility syndromes in children in the area of broad clinical use of massive parallel sequencing. Eur J Pediatr. 2015;174(8):987–97.  https://doi.org/10.1007/s00431-015-2565-x.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Kuhlen M, Borkhardt A. Trio sequencing in pediatric cancer and clinical implications. EMBO Mol Med. 2018;10(4):e8641–7.  https://doi.org/10.15252/emmm.201708641.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Al-Mousa H, Abouelhoda M, Monies DM, Al-Tassan N, Al-Ghonaium A, Al-Saud B, et al. Unbiased targeted next-generation sequencing molecular approach for primary immunodeficiency diseases. J Allergy Clin Immunol. 2016;137(6):1780–7.  https://doi.org/10.1016/j.jaci.2015.12.1310.CrossRefPubMedGoogle Scholar
  89. 89.
    Nijman IJ, van Montfrans JM, Hoogstraat M, Boes ML, van de Corput L, Renner ED, et al. Targeted next-generation sequencing: a novel diagnostic tool for primary immunodeficiencies. J Allergy Clin Immunol. 2014;133(2):529–34.  https://doi.org/10.1016/j.jaci.2013.08.032.CrossRefPubMedGoogle Scholar
  90. 90.
    Stoddard JL, Niemela JE, Fleisher TA, Rosenzweig SD. Targeted NGS: a cost-effective approach to molecular diagnosis of PIDs. Front Immunol. 2014;5(1):531.  https://doi.org/10.3389/fimmu.2014.00531.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Sandoval C, Swift M. Treatment of lymphoid malignancies in patients with ataxia-telangiectasia. Med Pediatr Oncol. 1998;31(6):491–7.CrossRefGoogle Scholar
  92. 92.
    Taylor AM. Ataxia telangiectasia genes and predisposition to leukaemia, lymphoma and breast cancer. Br J Cancer. 1992;66(1):5–9.CrossRefGoogle Scholar
  93. 93.
    van Os NJH, Haaxma CA, van der Flier M, Merkus PJFM, van Deuren M, de Groot IJM, et al. Ataxia-telangiectasia: recommendations for multidisciplinary treatment. Dev Med Child Neurol. 2017;59(7):680–9.CrossRefGoogle Scholar
  94. 94.
    Ben-Omran TI, Cerosaletti K, Concannon P, Weitzman S, Nezarati MM. A patient with mutations in DNA ligase IV: clinical features and overlap with Nijmegen breakage syndrome. Am J Med Genet A. 2005;137A(3):283–7.  https://doi.org/10.1002/ajmg.a.30869.CrossRefPubMedGoogle Scholar
  95. 95.
    Sharapova SO, Chang EY, Guryanova IE, Proleskovskaya IV, Fedorova AS, Rutskaya EA, et al. Next generation sequencing revealed DNA ligase IV deficiency in a “developmentally normal” patient with massive brain Epstein-Barr virus-positive diffuse large B-cell lymphoma. Clin Immunol. 2016;163:108–10.  https://doi.org/10.1016/j.clim.2016.01.002.CrossRefPubMedGoogle Scholar
  96. 96.
    Altmann T, Gennery AR. DNA ligase IV syndrome; a review. Orphanet J Rare Dis. 2016;11(1):137.  https://doi.org/10.1186/s13023-016-0520-1.CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Cunniff C, Bassetti JA, Ellis NA. Bloom’s syndrome: clinical spectrum, molecular pathogenesis, and cancer predisposition. Mol Syndromol. 2017;8(1):4–23.  https://doi.org/10.1159/000452082.CrossRefPubMedGoogle Scholar
  98. 98.
    Kostjukovits S, Klemetti P, Valta H, Martelius T, Notarangelo LD, Seppanen M, et al. Analysis of clinical and immunologic phenotype in a large cohort of children and adults with cartilage-hair hypoplasia. J Allergy Clin Immunol. 2017;140(2):612–4 e5.  https://doi.org/10.1016/j.jaci.2017.02.016.CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Taskinen M, Ranki A, Pukkala E, Jeskanen L, Kaitila I, Makitie O. Extended follow-up of the Finnish cartilage-hair hypoplasia cohort confirms high incidence of non-Hodgkin lymphoma and basal cell carcinoma. Am J Med Genet A. 2008;146A(18):2370–5.  https://doi.org/10.1002/ajmg.a.32478.CrossRefPubMedGoogle Scholar
  100. 100.
    Ding Q, Yang LY. Perforin gene mutations in 77 Chinese patients with lymphomas. World J Emerg Med. 2013;4(2):128–32.  https://doi.org/10.5847/wjem.j.1920-8642.2013.02.008.CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Mehta PA, Davies SM, Kumar A, Devidas M, Lee S, Zamzow T, et al. Perforin polymorphism A91V and susceptibility to B-precursor childhood acute lymphoblastic leukemia: a report from the Children’s Oncology Group. Leukemia. 2006;20(9):1539–41.  https://doi.org/10.1038/sj.leu.2404299.CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Koochakzadeh L, Hosseinverdi S, Hedayat M, Farahani F, Tofighi A, Eghbali M, et al. Study of SH2D1A gene mutation in paediatric patients with B-cell lymphoma. Allergol Immunopathol (Madr). 2015;43(6):568–70.  https://doi.org/10.1016/j.aller.2015.01.007.CrossRefGoogle Scholar
  103. 103.
    Tangye SG. XLP: clinical features and molecular etiology due to mutations in SH2D1A encoding SAP. J Clin Immunol. 2014;34(7):772–9.  https://doi.org/10.1007/s10875-014-0083-7.CrossRefPubMedGoogle Scholar
  104. 104.
    Booth C, Gilmour KC, Veys P, Gennery AR, Slatter MA, Chapel H, et al. X-linked lymphoproliferative disease due to SAP/SH2D1A deficiency: a multicenter study on the manifestations, management and outcome of the disease. Blood. 2011;117(1):53–62.  https://doi.org/10.1182/blood-2010-06-284935.CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Arico M, Imashuku S, Clementi R, Hibi S, Teramura T, Danesino C, et al. Hemophagocytic lymphohistiocytosis due to germline mutations in SH2D1A, the X-linked lymphoproliferative disease gene. Blood. 2001;97(4):1131–3.CrossRefGoogle Scholar
  106. 106.
    Linka RM, Risse SL, Bienemann K, Werner M, Linka Y, Krux F, et al. Loss-of-function mutations within the IL-2 inducible kinase ITK in patients with EBV-associated lymphoproliferative diseases. Leukemia. 2012;26(5):963–71.  https://doi.org/10.1038/leu.2011.371.CrossRefPubMedGoogle Scholar
  107. 107.
    Salzer E, Daschkey S, Choo S, Gombert M, Santos-Valente E, Ginzel S, et al. Combined immunodeficiency with life-threatening EBV-associated lymphoproliferative disorder in patients lacking functional CD27. Haematologica. 2013;98(3):473–8.  https://doi.org/10.3324/haematol.2012.068791.CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Abolhassani H, Edwards ES, Ikinciogullari A, Jing H, Borte S, Buggert M, et al. Combined immunodeficiency and Epstein-Barr virus-induced B cell malignancy in humans with inherited CD70 deficiency. J Exp Med. 2017;214(1):91–106.  https://doi.org/10.1084/jem.20160849.CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Izawa K, Martin E, Soudais C, Bruneau J, Boutboul D, Rodriguez R, et al. Inherited CD70 deficiency in humans reveals a critical role for the CD70-CD27 pathway in immunity to Epstein-Barr virus infection. J Exp Med. 2017;214(1):73–89.  https://doi.org/10.1084/jem.20160784.CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Winter S, Martin E, Boutboul D, Lenoir C, Boudjemaa S, Petit A, et al. Loss of RASGRP1 in humans impairs T-cell expansion leading to Epstein-Barr virus susceptibility. EMBO Mol Med. 2018;10(2):188–99.  https://doi.org/10.15252/emmm.201708292.CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Stray-Pedersen A, Jouanguy E, Crequer A, Bertuch AA, Brown BS, Jhangiani SN, et al. Compound heterozygous CORO1A mutations in siblings with a mucocutaneous-immunodeficiency syndrome of epidermodysplasia verruciformis-HPV, molluscum contagiosum and granulomatous tuberculoid leprosy. J Clin Immunol. 2014;34(7):871–90.  https://doi.org/10.1007/s10875-014-0074-8.CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Moshous D, Martin E, Carpentier W, Lim A, Callebaut I, Canioni D, et al. Whole-exome sequencing identifies Coronin-1A deficiency in 3 siblings with immunodeficiency and EBV-associated B-cell lymphoproliferation. J Allergy Clin Immunol. 2013;131(6):1594–603.  https://doi.org/10.1016/j.jaci.2013.01.042.CrossRefPubMedGoogle Scholar
  113. 113.
    Martin E, Palmic N, Sanquer S, Lenoir C, Hauck F, Mongellaz C, et al. CTP synthase 1 deficiency in humans reveals its central role in lymphocyte proliferation. Nature. 2014;510(7504):288–92.  https://doi.org/10.1038/nature13386.CrossRefPubMedGoogle Scholar
  114. 114.
    Verzegnassi F, Valencic E, Kiren V, Giurici N, Bianco AM, Marcuzzi A, et al. The challenge of next generation sequencing in a boy with severe mononucleosis and EBV-related lymphoma. J Pediatr Hematol Oncol. 2018;40(5):e323–6.  https://doi.org/10.1097/MPH.0000000000001004.CrossRefPubMedGoogle Scholar
  115. 115.
    Gineau L, Cognet C, Kara N, Lach FP, Dunne J, Veturi U, et al. Partial MCM4 deficiency in patients with growth retardation, adrenal insufficiency, and natural killer cell deficiency. J Clin Invest. 2012;122(3):821–32.  https://doi.org/10.1172/JCI61014.CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Li FY, Chaigne-Delalande B, Su H, Uzel G, Matthews H, Lenardo MJ. XMEN disease: a new primary immunodeficiency affecting Mg2+ regulation of immunity against Epstein-Barr virus. Blood. 2014;123(14):2148–52.  https://doi.org/10.1182/blood-2013-11-538686.CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Sherkat R, Sabri MR, Dehghan B, Bigdelian H, Reisi N, Afsharmoghadam N, et al. EBV lymphoproliferative-associated disease and primary cardiac T-cell lymphoma in a STK4 deficient patient: a case report. Medicine (Baltimore). 2017;96(48):e8852.  https://doi.org/10.1097/MD.0000000000008852.CrossRefGoogle Scholar
  118. 118.
    Crequer A, Troeger A, Patin E, Ma CS, Picard C, Pedergnana V, et al. Human RHOH deficiency causes T cell defects and susceptibility to EV-HPV infections. J Clin Invest. 2012;122(9):3239–47.  https://doi.org/10.1172/JCI62949.CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Skibola CF, Berndt SI, Vijai J, Conde L, Wang Z, Yeager M, et al. Genome-wide association study identifies five susceptibility loci for follicular lymphoma outside the HLA region. Am J Hum Genet. 2014;95(4):462–71.  https://doi.org/10.1016/j.ajhg.2014.09.004.CrossRefPubMedPubMedCentralGoogle Scholar
  120. 120.
    Conde L, Halperin E, Akers NK, Brown KM, Smedby KE, Rothman N, et al. Genome-wide association study of follicular lymphoma identifies a risk locus at 6p21.32. Nat Genet. 2010;42(8):661–4.  https://doi.org/10.1038/ng.626.CrossRefPubMedPubMedCentralGoogle Scholar
  121. 121.
    Smedby KE, Foo JN, Skibola CF, Darabi H, Conde L, Hjalgrim H, et al. GWAS of follicular lymphoma reveals allelic heterogeneity at 6p21.32 and suggests shared genetic susceptibility with diffuse large B-cell lymphoma. PLoS Genet. 2011;7(4):e1001378.  https://doi.org/10.1371/journal.pgen.1001378.CrossRefPubMedPubMedCentralGoogle Scholar
  122. 122.
    Cerhan JR, Berndt SI, Vijai J, Ghesquieres H, McKay J, Wang SS, et al. Genome-wide association study identifies multiple susceptibility loci for diffuse large B cell lymphoma. Nat Genet. 2014;46(11):1233–8.  https://doi.org/10.1038/ng.3105.CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    Tan DE, Foo JN, Bei JX, Chang J, Peng R, Zheng X, et al. Genome-wide association study of B cell non-Hodgkin lymphoma identifies 3q27 as a susceptibility locus in the Chinese population. Nat Genet. 2013;45(7):804–7.  https://doi.org/10.1038/ng.2666.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Children’s Cancer Research InstituteViennaAustria
  2. 2.Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical FacultyHeinrich Heine UniversityDüsseldorfGermany

Personalised recommendations