Advertisement

Pathology

  • Christoph Kornauth
  • Ana-Iris Schiefer
  • Ingrid Simonitsch-KluppEmail author
Chapter

Abstract

Non-Hodgkin’s lymphomas (NHL) of children and young adults differ considerably in biology, incidence, treatment, and outcome compared to lymphomas occurring in adults. They constitute a diverse spectrum of usually highly aggressive tumors derived from both mature and immature lymphoid cells. The diagnosis is accomplished by combining histomorphologic, immunophenotypic, and genetic features into specific lymphoma subtypes. Besides the classical high-grade lymphomas arising preferentially in the pediatric population, such as Burkitt lymphoma, lymphoblastic lymphoma, and anaplastic large cell lymphoma (ALCL), reports of several unique clinicopathologic lymphomatous conditions with a rather benign clinical course have occurred in increasing numbers, which have eventually led to the acknowledgment as separate entities in the updated WHO 2016 classification of tumors of the hematopoietic and lymphoid tissues. Among T-cell lymphomas, more precisely characterized genetic and phenotypic peculiarities of ALCL and peripheral T-cell lymphoma (PTCL) have led to distinct subcategorization with evidence of clinical importance. Exact pathologic diagnosis provides the basis for therapeutic management and risk stratification. Here, we describe characteristic pathologic features of lymphomas arising in the pediatric age group, with on one hand emphasis on the most common subtypes, on the other hand with description of the most important diagnostic features and the differential diagnosis of the newly recognized entities, such as pediatric-type follicular- and marginal-zone lymphoma, as well as large B-cell lymphomas with IRF-4 rearrangements.

Keywords

Lymphoma classification Pediatric lymphoma pathology Pediatric high-grade lymphoma Pediatric indolent lymphoma Lymphoma diagnosis Anaplastic large cell lymphoma Pediatric-type follicular lymphoma Pediatric PTLD histology 

References

  1. 1.
    Swerdlow S, Campo E, Harris NL, Jaffe E, Pileri S, Stein H, et al. WHO classification of tumours of haematopoietic and lymphoid tissues. Lyon: IARC Press; 2017.Google Scholar
  2. 2.
    Sandlund JT, Downing JR, Crist WM. Non-Hodgkin’s lymphoma in childhood. N Engl J Med. 1996;334(19):1238–48.CrossRefGoogle Scholar
  3. 3.
    Thomas DA, Kantarjian HM. Lymphoblastic lymphoma. Hematol Oncol Clin North Am. 2001;15(1):51–95, vi.CrossRefPubMedGoogle Scholar
  4. 4.
    Lin P, Jones D, Dorfman DM, Medeiros LJ. Precursor B-cell lymphoblastic lymphoma: a predominantly extranodal tumor with low propensity for leukemic involvement. Am J Surg Pathol. 2000;24(11):1480–90.CrossRefPubMedGoogle Scholar
  5. 5.
    Tricot G, Broeckaert-Van Orshoven A, Van Hoof A, Verwilghen RL. Sudan black B positivity in acute lymphoblastic leukaemia. Br J Haematol. 1982;51(4):615–21.CrossRefPubMedGoogle Scholar
  6. 6.
    Perkins SL, Segal GH, Kjeldsberg CR. Classification of non-Hodgkin’s lymphomas in children. Semin Diagn Pathol. 1995;12(4):303–13.PubMedGoogle Scholar
  7. 7.
    Oschlies I, Burkhardt B, Chassagne-Clement C, d’Amore ES, Hansson U, Hebeda K, et al. Diagnosis and immunophenotype of 188 pediatric lymphoblastic lymphomas treated within a randomized prospective trial: experiences and preliminary recommendations from the European childhood lymphoma pathology panel. Am J Surg Pathol. 2011;35(6):836–44.CrossRefGoogle Scholar
  8. 8.
    Arber DA, Snyder DS, Fine M, Dagis A, Niland J, Slovak ML. Myeloperoxidase immunoreactivity in adult acute lymphoblastic leukemia. Am J Clin Pathol. 2001;116(1):25–33.CrossRefPubMedGoogle Scholar
  9. 9.
    Greaves MF, Janossy G, Peto J, Kay H. Immunologically defined subclasses of acute lymphoblastic leukaemia in children: their relationship to presentation features and prognosis. Br J Haematol. 1981;48(2):179–97.CrossRefPubMedGoogle Scholar
  10. 10.
    Bene MC, Castoldi G, Knapp W, Ludwig WD, Matutes E, Orfao A, et al. Proposals for the immunological classification of acute leukemias. European Group for the Immunological Characterization of Leukemias (EGIL). Leukemia. 1995;9(10):1783–6.PubMedGoogle Scholar
  11. 11.
    Chiaretti S, Zini G, Bassan R. Diagnosis and subclassification of acute lymphoblastic leukemia. Mediterr J Hematol Infect Dis. 2014;6(1):e2014073.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Attygalle A, Al-Jehani R, Diss TC, Munson P, Liu H, Du MQ, et al. Neoplastic T cells in angioimmunoblastic T-cell lymphoma express CD10. Blood. 2002;99(2):627–33.CrossRefPubMedGoogle Scholar
  13. 13.
    Pilozzi E, Pulford K, Jones M, Muller-Hermelink HK, Falini B, Ralfkiaer E, et al. Co-expression of CD79a (JCB117) and CD3 by lymphoblastic lymphoma. J Pathol. 1998;186(2):140–3.CrossRefPubMedGoogle Scholar
  14. 14.
    Uckun FM, Sather HN, Gaynon PS, Arthur DC, Trigg ME, Tubergen DG, et al. Clinical features and treatment outcome of children with myeloid antigen positive acute lymphoblastic leukemia: a report from the Children’s Cancer Group. Blood. 1997;90(1):28–35.PubMedGoogle Scholar
  15. 15.
    Coustan-Smith E, Mullighan CG, Onciu M, Behm FG, Raimondi SC, Pei D, et al. Early T-cell precursor leukaemia: a subtype of very high-risk acute lymphoblastic leukaemia. Lancet Oncol. 2009;10(2):147–56.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Chantepie SP, Cornet E, Salaun V, Reman O. Hematogones: an overview. Leuk Res. 2013;37(11):1404–11.CrossRefPubMedGoogle Scholar
  17. 17.
    McKenna RW, Washington LT, Aquino DB, Picker LJ, Kroft SH. Immunophenotypic analysis of hematogones (B-lymphocyte precursors) in 662 consecutive bone marrow specimens by 4-color flow cytometry. Blood. 2001;98(8):2498–507.CrossRefPubMedGoogle Scholar
  18. 18.
    Al-Shieban S, Byrne E, Trivedi P, Morilla R, Matutes E, Naresh KN. Immunohistochemical distinction of haematogones from B lymphoblastic leukaemia/lymphoma or B-cell acute lymphoblastic leukaemia (B-ALL) on bone marrow trephine biopsies: a study on 62 patients. Br J Haematol. 2011;154(4):466–70.CrossRefPubMedGoogle Scholar
  19. 19.
    Yasmeen S, Rajkumar A, Grossman H, Szallasi A. Terminal deoxynucleotidyl transferase (TdT)-negative lymphoblastic leukemia in pediatric patients: incidence and clinical significance. Pediatr Dev Pathol. 2017;20:463–8.CrossRefPubMedGoogle Scholar
  20. 20.
    Adam P, Hakroush S, Hofmann I, Reidenbach S, Marx A, Strobel P. Thymoma with loss of keratin expression (and giant cells): a potential diagnostic pitfall. Virchows Arch. 2014;465(3):313–20.CrossRefPubMedGoogle Scholar
  21. 21.
    Ohgami RS, Zhao S, Ohgami JK, Leavitt MO, Zehnder JL, West RB, et al. TdT+ T-lymphoblastic populations are increased in Castleman disease, in Castleman disease in association with follicular dendritic cell tumors, and in angioimmunoblastic T-cell lymphoma. Am J Surg Pathol. 2012;36(11):1619–28.CrossRefPubMedGoogle Scholar
  22. 22.
    Ohgami RS, Sendamarai AK, Atwater SK, Liedtke M, Fleming MD, Natkunam Y, et al. Indolent T-lymphoblastic proliferation with disseminated multinodal involvement and partial CD33 expression. Am J Surg Pathol. 2014;38(9):1298–304.CrossRefPubMedGoogle Scholar
  23. 23.
    Ohgami RS, Arber DA, Zehnder JL, Natkunam Y, Warnke RA. Indolent T-lymphoblastic proliferation (iT-LBP): a review of clinical and pathologic features and distinction from malignant T-lymphoblastic lymphoma. Adv Anat Pathol. 2013;20(3):137–40.CrossRefPubMedGoogle Scholar
  24. 24.
    van der Velden VH, Bruggemann M, Hoogeveen PG, de Bie M, Hart PG, Raff T, et al. TCRB gene rearrangements in childhood and adult precursor-B-ALL: frequency, applicability as MRD-PCR target, and stability between diagnosis and relapse. Leukemia. 2004;18(12):1971–80.CrossRefPubMedGoogle Scholar
  25. 25.
    Szczepanski T, Pongers-Willemse MJ, Langerak AW, Harts WA, Wijkhuijs AJ, van Wering ER, et al. Ig heavy chain gene rearrangements in T-cell acute lymphoblastic leukemia exhibit predominant DH6-19 and DH7-27 gene usage, can result in complete V-D-J rearrangements, and are rare in T-cell receptor alpha beta lineage. Blood. 1999;93(12):4079–85.PubMedGoogle Scholar
  26. 26.
    Mullighan CG. Molecular genetics of B-precursor acute lymphoblastic leukemia. J Clin Invest. 2012;122(10):3407–15.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Miles RR, Shah RK, Frazer JK. Molecular genetics of childhood, adolescent and young adult non-Hodgkin lymphoma. Br J Haematol. 2016;173(4):582–96.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Graux C, Cools J, Michaux L, Vandenberghe P, Hagemeijer A. Cytogenetics and molecular genetics of T-cell acute lymphoblastic leukemia: from thymocyte to lymphoblast. Leukemia. 2006;20(9):1496–510.CrossRefPubMedGoogle Scholar
  29. 29.
    Magrath I. Epidemiology: clues to the pathogenesis of Burkitt lymphoma. Br J Haematol. 2012;156(6):744–56.CrossRefGoogle Scholar
  30. 30.
    Barth TF, Muller S, Pawlita M, Siebert R, Rother JU, Mechtersheimer G, et al. Homogeneous immunophenotype and paucity of secondary genomic aberrations are distinctive features of endemic but not of sporadic Burkitt’s lymphoma and diffuse large B-cell lymphoma with MYC rearrangement. J Pathol. 2004;203(4):940–5.CrossRefGoogle Scholar
  31. 31.
    Magrath I. The pathogenesis of Burkitt’s lymphoma. Adv Cancer Res. 1990;55:133–270.CrossRefGoogle Scholar
  32. 32.
    Hochberg J, Waxman IM, Kelly KM, Morris E, Cairo MS. Adolescent non-Hodgkin lymphoma and Hodgkin lymphoma: state of the science. Br J Haematol. 2009;144(1):24–40.CrossRefGoogle Scholar
  33. 33.
    Chuang SS, Huang WT, Hsieh PP, Jung YC, Ye H, Du MQ, et al. Sporadic paediatric and adult Burkitt lymphomas share similar phenotypic and genotypic features. Histopathology. 2008;52(4):427–35.CrossRefGoogle Scholar
  34. 34.
    Cairo MS, Sposto R, Perkins SL, Meadows AT, Hoover-Regan ML, Anderson JR, et al. Burkitt’s and Burkitt-like lymphoma in children and adolescents: a review of the Children’s Cancer Group experience. Br J Haematol. 2003;120(4):660–70.CrossRefGoogle Scholar
  35. 35.
    Burkitt D. A sarcoma involving the jaws in African children. Br J Surg. 1958;46(197):218–23.CrossRefGoogle Scholar
  36. 36.
    Hecht JL, Aster JC. Molecular biology of Burkitt’s lymphoma. J Clin Oncol. 2000;18(21):3707–21.CrossRefGoogle Scholar
  37. 37.
    Woo KB, Funkhouser WK, Sullivan C, Alabaster O. Analysis of the proliferation kinetics of Burkitt’s lymphoma cells. Cell Tissue Kinet. 1980;13(6):591–604.PubMedGoogle Scholar
  38. 38.
    Perkins SL. Work-up and diagnosis of pediatric non-Hodgkin’s lymphomas. Pediatr Dev Pathol. 2000;3(4):374–90.CrossRefGoogle Scholar
  39. 39.
    Hummel M, Bentink S, Berger H, Klapper W, Wessendorf S, Barth TF, et al. A biologic definition of Burkitt’s lymphoma from transcriptional and genomic profiling. N Engl J Med. 2006;354(23):2419–30.CrossRefGoogle Scholar
  40. 40.
    Lones MA, Auperin A, Raphael M, McCarthy K, Perkins SL, MacLennan KA, et al. Mature B-cell lymphoma/leukemia in children and adolescents: intergroup pathologist consensus with the revised European-American Lymphoma Classification. Ann Oncol. 2000;11(1):47–51.CrossRefGoogle Scholar
  41. 41.
    Dave SS, Fu K, Wright GW, Lam LT, Kluin P, Boerma EJ, et al. Molecular diagnosis of Burkitt’s lymphoma. N Engl J Med. 2006;354(23):2431–42.CrossRefGoogle Scholar
  42. 42.
    Rodig SJ, Vergilio JA, Shahsafaei A, Dorfman DM. Characteristic expression patterns of TCL1, CD38, and CD44 identify aggressive lymphomas harboring a MYC translocation. Am J Surg Pathol. 2008;32(1):113–22.CrossRefGoogle Scholar
  43. 43.
    Cogliatti SB, Novak U, Henz S, Schmid U, Moller P, Barth TF, et al. Diagnosis of Burkitt lymphoma in due time: a practical approach. Br J Haematol. 2006;134(3):294–301.CrossRefGoogle Scholar
  44. 44.
    Naresh KN, Ibrahim HA, Lazzi S, Rince P, Onorati M, Ambrosio MR, et al. Diagnosis of Burkitt lymphoma using an algorithmic approach--applicable in both resource-poor and resource-rich countries. Br J Haematol. 2011;154(6):770–6.CrossRefGoogle Scholar
  45. 45.
    Tapia G, Lopez R, Munoz-Marmol AM, Mate JL, Sanz C, Marginet R, et al. Immunohistochemical detection of MYC protein correlates with MYC gene status in aggressive B cell lymphomas. Histopathology. 2011;59(4):672–8.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Masque-Soler N, Szczepanowski M, Kohler CW, Aukema SM, Nagel I, Richter J, et al. Clinical and pathological features of Burkitt lymphoma showing expression of BCL2--an analysis including gene expression in formalin-fixed paraffin-embedded tissue. Br J Haematol. 2015;171(4):501–8.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Pelicci PG, Knowles DM 2nd, Magrath I, Dalla-Favera R. Chromosomal breakpoints and structural alterations of the c-myc locus differ in endemic and sporadic forms of Burkitt lymphoma. Proc Natl Acad Sci U S A. 1986;83(9):2984–8.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Onciu M, Schlette E, Zhou Y, Raimondi SC, Giles FJ, Kantarjian HM, et al. Secondary chromosomal abnormalities predict outcome in pediatric and adult high-stage Burkitt lymphoma. Cancer. 2006;107(5):1084–92.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Salaverria I, Martin-Guerrero I, Wagener R, Kreuz M, Kohler CW, Richter J, et al. A recurrent 11q aberration pattern characterizes a subset of MYC-negative high-grade B-cell lymphomas resembling Burkitt lymphoma. Blood. 2014;123(8):1187–98.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Rimsza L, Pittaluga S, Dirnhofer S, Copie-Bergman C, de Leval L, Facchetti F, et al. The clinicopathologic spectrum of mature aggressive B cell lymphomas. Virchows Arch. 2017;471(4):453–66.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Rymkiewicz G, Grygalewicz B, Chechlinska M, Blachnio K, Bystydzienski Z, Romejko-Jarosinska J, et al. A comprehensive flow-cytometry-based immunophenotypic characterization of Burkitt-like lymphoma with 11q aberration. Mod Pathol. 2018;31(5):732–43.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Frost M, Newell J, Lones MA, Tripp SR, Cairo MS, Perkins SL. Comparative immunohistochemical analysis of pediatric Burkitt lymphoma and diffuse large B-cell lymphoma. Am J Clin Pathol. 2004;121(3):384–92.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Cairo MS, Sposto R, Hoover-Regan M, Meadows AT, Anderson JR, Siegel SE, et al. Childhood and adolescent large-cell lymphoma (LCL): a review of the Children’s Cancer Group experience. Am J Hematol. 2003;72(1):53–63.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Preciado MV, Fallo A, Chabay P, Calcagno L, De Matteo E. Epstein Barr virus-associated lymphoma in HIV-infected children. Pathol Res Pract. 2002;198(5):327–32.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Furutani E, Shimamura A. Germline genetic predisposition to hematologic malignancy. J Clin Oncol. 2017;35(9):1018–28.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Engelhard M, Brittinger G, Huhn D, Gerhartz HH, Meusers P, Siegert W, et al. Subclassification of diffuse large B-cell lymphomas according to the Kiel classification: distinction of centroblastic and immunoblastic lymphomas is a significant prognostic risk factor. Blood. 1997;89(7):2291–7.PubMedPubMedCentralGoogle Scholar
  57. 57.
    Dargent JL, Meiers I, Lespagnard L, Ma Y, Dehou MF, Verhest A. Diffuse large B-cell lymphoma with fibrillary matrix. Diagn Cytopathol. 2002;27(4):223–6.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Rosenwald A, Wright G, Chan WC, Connors JM, Campo E, Fisher RI, et al. The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma. N Engl J Med. 2002;346(25):1937–47.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Hans CP, Weisenburger DD, Greiner TC, Gascoyne RD, Delabie J, Ott G, et al. Confirmation of the molecular classification of diffuse large B-cell lymphoma by immunohistochemistry using a tissue microarray. Blood. 2004;103(1):275–82.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Choi WW, Weisenburger DD, Greiner TC, Piris MA, Banham AH, Delabie J, et al. A new immunostain algorithm classifies diffuse large B-cell lymphoma into molecular subtypes with high accuracy. Clin Cancer Res. 2009;15(17):5494–502.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Visco C, Li Y, Xu-Monette ZY, Miranda RN, Green TM, Li Y, et al. Comprehensive gene expression profiling and immunohistochemical studies support application of immunophenotypic algorithm for molecular subtype classification in diffuse large B-cell lymphoma: a report from the International DLBCL Rituximab-CHOP Consortium Program Study. Leukemia. 2012;26(9):2103–13.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Miles RR, Raphael M, McCarthy K, Wotherspoon A, Lones MA, Terrier-Lacombe MJ, et al. Pediatric diffuse large B-cell lymphoma demonstrates a high proliferation index, frequent c-Myc protein expression, and a high incidence of germinal center subtype: report of the French-American-British (FAB) international study group. Pediatr Blood Cancer. 2008;51(3):369–74.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Sehn LH, Gascoyne RD. Diffuse large B-cell lymphoma: optimizing outcome in the context of clinical and biologic heterogeneity. Blood. 2015;125(1):22–32.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Green TM, Young KH, Visco C, Xu-Monette ZY, Orazi A, Go RS, et al. Immunohistochemical double-hit score is a strong predictor of outcome in patients with diffuse large B-cell lymphoma treated with rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone. J Clin Oncol. 2012;30(28):3460–7.CrossRefGoogle Scholar
  65. 65.
    Sarkozy C, Traverse-Glehen A, Coiffier B. Double-hit and double-protein-expression lymphomas: aggressive and refractory lymphomas. Lancet Oncol. 2015;16(15):e555–e67.CrossRefGoogle Scholar
  66. 66.
    Xu-Monette ZY, Tu M, Jabbar KJ, Cao X, Tzankov A, Visco C, et al. Clinical and biological significance of de novo CD5+ diffuse large B-cell lymphoma in Western countries. Oncotarget. 2015;6(8):5615–33.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Hu S, Xu-Monette ZY, Balasubramanyam A, Manyam GC, Visco C, Tzankov A, et al. CD30 expression defines a novel subgroup of diffuse large B-cell lymphoma with favorable prognosis and distinct gene expression signature: a report from the International DLBCL Rituximab-CHOP Consortium Program Study. Blood. 2013;121(14):2715–24.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Sebastian E, Alcoceba M, Balanzategui A, Marin L, Montes-Moreno S, Flores T, et al. Molecular characterization of immunoglobulin gene rearrangements in diffuse large B-cell lymphoma: antigen-driven origin and IGHV4-34 as a particular subgroup of the non-GCB subtype. Am J Pathol. 2012;181(5):1879–88.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Dobashi A. Molecular pathogenesis of diffuse large B-cell lymphoma. J Clin Exp Hematop. 2016;56(2):71–8.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Pasqualucci L, Bereshchenko O, Niu H, Klein U, Basso K, Guglielmino R, et al. Molecular pathogenesis of non-Hodgkin’s lymphoma: the role of Bcl-6. Leuk Lymphoma. 2003;44(Suppl 3):S5–12.CrossRefPubMedGoogle Scholar
  71. 71.
    Visco C, Tzankov A, Xu-Monette ZY, Miranda RN, Tai YC, Li Y, et al. Patients with diffuse large B-cell lymphoma of germinal center origin with BCL2 translocations have poor outcome, irrespective of MYC status: a report from an International DLBCL rituximab-CHOP Consortium Program Study. Haematologica. 2013;98(2):255–63.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Huang JZ, Sanger WG, Greiner TC, Staudt LM, Weisenburger DD, Pickering DL, et al. The t(14;18) defines a unique subset of diffuse large B-cell lymphoma with a germinal center B-cell gene expression profile. Blood. 2002;99(7):2285–90.CrossRefPubMedGoogle Scholar
  73. 73.
    Iqbal J, Greiner TC, Patel K, Dave BJ, Smith L, Ji J, et al. Distinctive patterns of BCL6 molecular alterations and their functional consequences in different subgroups of diffuse large B-cell lymphoma. Leukemia. 2007;21(11):2332–43.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Deffenbacher KE, Iqbal J, Sanger W, Shen Y, Lachel C, Liu Z, et al. Molecular distinctions between pediatric and adult mature B-cell non-Hodgkin lymphomas identified through genomic profiling. Blood. 2012;119(16):3757–66.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Oschlies I, Klapper W, Zimmermann M, Krams M, Wacker HH, Burkhardt B, et al. Diffuse large B-cell lymphoma in pediatric patients belongs predominantly to the germinal-center type B-cell lymphomas: a clinicopathologic analysis of cases included in the German BFM (Berlin-Frankfurt-Munster) Multicenter Trial. Blood. 2006;107(10):4047–52.CrossRefGoogle Scholar
  76. 76.
    Schmitz R, Wright GW, Huang DW, Johnson CA, Phelan JD, Wang JQ, et al. Genetics and pathogenesis of diffuse large B-cell lymphoma. N Engl J Med. 2018;378(15):1396–407.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Oschlies I, Burkhardt B, Salaverria I, Rosenwald A, d’Amore ES, Szczepanowski M, et al. Clinical, pathological and genetic features of primary mediastinal large B-cell lymphomas and mediastinal gray zone lymphomas in children. Haematologica. 2011;96(2):262–8.CrossRefGoogle Scholar
  78. 78.
    Rosenwald A, Wright G, Leroy K, Yu X, Gaulard P, Gascoyne RD, et al. Molecular diagnosis of primary mediastinal B cell lymphoma identifies a clinically favorable subgroup of diffuse large B cell lymphoma related to Hodgkin lymphoma. J Exp Med. 2003;198(6):851–62.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Traverse-Glehen A, Pittaluga S, Gaulard P, Sorbara L, Alonso MA, Raffeld M, et al. Mediastinal gray zone lymphoma: the missing link between classic Hodgkin’s lymphoma and mediastinal large B-cell lymphoma. Am J Surg Pathol. 2005;29(11):1411–21.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Dunleavy K, Wilson WH. Primary mediastinal B-cell lymphoma and mediastinal gray zone lymphoma: do they require a unique therapeutic approach? Blood. 2015;125(1):33–9.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Dunleavy K, Steidl C. Emerging biological insights and novel treatment strategies in primary mediastinal large B-cell lymphoma. Semin Hematol. 2015;52(2):119–25.CrossRefGoogle Scholar
  82. 82.
    Savage KJ, Monti S, Kutok JL, Cattoretti G, Neuberg D, De Leval L, et al. The molecular signature of mediastinal large B-cell lymphoma differs from that of other diffuse large B-cell lymphomas and shares features with classical Hodgkin lymphoma. Blood. 2003;102(12):3871–9.CrossRefGoogle Scholar
  83. 83.
    Yuan J, Wright G, Rosenwald A, Steidl C, Gascoyne RD, Connors JM, et al. Identification of primary mediastinal large B-cell lymphoma at nonmediastinal sites by gene expression profiling. Am J Surg Pathol. 2015;39(10):1322–30.CrossRefPubMedGoogle Scholar
  84. 84.
    Moller P, Moldenhauer G, Momburg F, Lammler B, Eberlein-Gonska M, Kiesel S, et al. Mediastinal lymphoma of clear cell type is a tumor corresponding to terminal steps of B cell differentiation. Blood. 1987;69(4):1087–95.PubMedGoogle Scholar
  85. 85.
    Garcia JF, Mollejo M, Fraga M, Forteza J, Muniesa JA, Perez-Guillermo M, et al. Large B-cell lymphoma with Hodgkin’s features. Histopathology. 2005;47(1):101–10.CrossRefPubMedGoogle Scholar
  86. 86.
    Pileri SA, Gaidano G, Zinzani PL, Falini B, Gaulard P, Zucca E, et al. Primary mediastinal B-cell lymphoma: high frequency of BCL-6 mutations and consistent expression of the transcription factors OCT-2, BOB.1, and PU.1 in the absence of immunoglobulins. Am J Pathol. 2003;162(1):243–53.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Calaminici M, Piper K, Lee AM, Norton AJ. CD23 expression in mediastinal large B-cell lymphomas. Histopathology. 2004;45(6):619–24.CrossRefPubMedGoogle Scholar
  88. 88.
    Copie-Bergman C, Gaulard P, Maouche-Chretien L, Briere J, Haioun C, Alonso MA, et al. The MAL gene is expressed in primary mediastinal large B-cell lymphoma. Blood. 1999;94(10):3567–75.PubMedGoogle Scholar
  89. 89.
    Gentry M, Bodo J, Durkin L, Hsi ED. Performance of a commercially available MAL antibody in the diagnosis of primary mediastinal large B-cell lymphoma. Am J Surg Pathol. 2017;41(2):189–94.CrossRefPubMedGoogle Scholar
  90. 90.
    Johnson PW, Davies AJ. Primary mediastinal B-cell lymphoma. Hematology Am Soc Hematol Educ Program. 2008;2008:349–58.CrossRefGoogle Scholar
  91. 91.
    Grant C, Dunleavy K, Eberle FC, Pittaluga S, Wilson WH, Jaffe ES. Primary mediastinal large B-cell lymphoma, classic Hodgkin lymphoma presenting in the mediastinum, and mediastinal gray zone lymphoma: what is the oncologist to do? Curr Hematol Malig Rep. 2011;6(3):157–63.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Weniger MA, Gesk S, Ehrlich S, Martin-Subero JI, Dyer MJ, Siebert R, et al. Gains of REL in primary mediastinal B-cell lymphoma coincide with nuclear accumulation of REL protein. Genes Chromosomes Cancer. 2007;46(4):406–15.CrossRefPubMedGoogle Scholar
  93. 93.
    Eberle FC, Salaverria I, Steidl C, Summers TA Jr, Pittaluga S, Neriah SB, et al. Gray zone lymphoma: chromosomal aberrations with immunophenotypic and clinical correlations. Mod Pathol. 2011;24(12):1586–97.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Eberle FC, Rodriguez-Canales J, Wei L, Hanson JC, Killian JK, Sun HW, et al. Methylation profiling of mediastinal gray zone lymphoma reveals a distinctive signature with elements shared by classical Hodgkin’s lymphoma and primary mediastinal large B-cell lymphoma. Haematologica. 2011;96(4):558–66.CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Liu Q, Salaverria I, Pittaluga S, Jegalian AG, Xi L, Siebert R, et al. Follicular lymphomas in children and young adults: a comparison of the pediatric variant with usual follicular lymphoma. Am J Surg Pathol. 2013;37(3):333–43.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Louissaint A Jr, Ackerman AM, Dias-Santagata D, Ferry JA, Hochberg EP, Huang MS, et al. Pediatric-type nodal follicular lymphoma: an indolent clonal proliferation in children and adults with high proliferation index and no BCL2 rearrangement. Blood. 2012;120(12):2395–404.CrossRefGoogle Scholar
  97. 97.
    Agrawal R, Wang J. Pediatric follicular lymphoma: a rare clinicopathologic entity. Arch Pathol Lab Med. 2009;133(1):142–6.PubMedGoogle Scholar
  98. 98.
    Oschlies I, Salaverria I, Mahn F, Meinhardt A, Zimmermann M, Woessmann W, et al. Pediatric follicular lymphoma--a clinico-pathological study of a population-based series of patients treated within the Non-Hodgkin’s Lymphoma--Berlin-Frankfurt-Munster (NHL-BFM) multicenter trials. Haematologica. 2010;95(2):253–9.CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Quintanilla-Martinez L, Sander B, Chan JK, Xerri L, Ott G, Campo E, et al. Indolent lymphomas in the pediatric population: follicular lymphoma, IRF4/MUM1+ lymphoma, nodal marginal zone lymphoma and chronic lymphocytic leukemia. Virchows Arch. 2016;468(2):141–57.CrossRefGoogle Scholar
  100. 100.
    Lorsbach RB, Shay-Seymore D, Moore J, Banks PM, Hasserjian RP, Sandlund JT, et al. Clinicopathologic analysis of follicular lymphoma occurring in children. Blood. 2002;99(6):1959–64.CrossRefGoogle Scholar
  101. 101.
    Karnik T, Ozawa MG, Lefterova M, Luna-Fineman S, Alvarez E, Link M, et al. The utility of IgM, CD21, HGAL and LMO2 in the diagnosis of pediatric follicular lymphoma. Hum Pathol. 2015;46(4):629–33.CrossRefPubMedGoogle Scholar
  102. 102.
    Martin-Guerrero I, Salaverria I, Burkhardt B, Szczepanowski M, Baudis M, Bens S, et al. Recurrent loss of heterozygosity in 1p36 associated with TNFRSF14 mutations in IRF4 translocation negative pediatric follicular lymphomas. Haematologica. 2013;98(8):1237–41.CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Schmidt J, Gong S, Marafioti T, Mankel B, Gonzalez-Farre B, Balague O, et al. Genome-wide analysis of pediatric-type follicular lymphoma reveals low genetic complexity and recurrent alterations of TNFRSF14 gene. Blood. 2016;128(8):1101–11.CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Louissaint A Jr, Schafernak KT, Geyer JT, Kovach AE, Ghandi M, Gratzinger D, et al. Pediatric-type nodal follicular lymphoma: a biologically distinct lymphoma with frequent MAPK pathway mutations. Blood. 2016;128(8):1093–100.CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Schmidt J, Ramis-Zaldivar JE, Nadeu F, Gonzalez-Farre B, Navarro A, Egan C, et al. Mutations of MAP2K1 are frequent in pediatric-type follicular lymphoma and result in ERK pathway activation. Blood. 2017;130(3):323–7.CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Kussick SJ, Kalnoski M, Braziel RM, Wood BL. Prominent clonal B-cell populations identified by flow cytometry in histologically reactive lymphoid proliferations. Am J Clin Pathol. 2004;121(4):464–72.CrossRefGoogle Scholar
  107. 107.
    Salaverria I, Philipp C, Oschlies I, Kohler CW, Kreuz M, Szczepanowski M, et al. Translocations activating IRF4 identify a subtype of germinal center-derived B-cell lymphoma affecting predominantly children and young adults. Blood. 2011;118(1):139–47.CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    de Leval L, Bonnet C, Copie-Bergman C, Seidel L, Baia M, Briere J, et al. Diffuse large B-cell lymphoma of Waldeyer’s ring has distinct clinicopathologic features: a GELA study. Ann Oncol. 2012;23(12):3143–51.CrossRefPubMedGoogle Scholar
  109. 109.
    Taddesse-Heath L, Pittaluga S, Sorbara L, Bussey M, Raffeld M, Jaffe ES. Marginal zone B-cell lymphoma in children and young adults. Am J Surg Pathol. 2003;27(4):522–31.CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Rizzo KA, Streubel B, Pittaluga S, Chott A, Xi L, Raffeld M, et al. Marginal zone lymphomas in children and the young adult population; characterization of genetic aberrations by FISH and RT-PCR. Mod Pathol. 2010;23(6):866–73.CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Kluin PM, Langerak AW, Beverdam-Vincent J, Geurts-Giele WR, Visser L, Rutgers B, et al. Paediatric nodal marginal zone B-cell lymphadenopathy of the neck: a Haemophilus influenzae-driven immune disorder? J Pathol. 2015;236(3):302–14.CrossRefGoogle Scholar
  112. 112.
    Attygalle AD, Liu H, Shirali S, Diss TC, Loddenkemper C, Stein H, et al. Atypical marginal zone hyperplasia of mucosa-associated lymphoid tissue: a reactive condition of childhood showing immunoglobulin lambda light-chain restriction. Blood. 2004;104(10):3343–8.CrossRefGoogle Scholar
  113. 113.
    Morris SW, Kirstein MN, Valentine MB, Dittmer KG, Shapiro DN, Saltman DL, et al. Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin’s lymphoma. Science. 1994;263(5151):1281–4.CrossRefGoogle Scholar
  114. 114.
    Pulford K, Lamant L, Morris SW, Butler LH, Wood KM, Stroud D, et al. Detection of anaplastic lymphoma kinase (ALK) and nucleolar protein nucleophosmin (NPM)-ALK proteins in normal and neoplastic cells with the monoclonal antibody ALK1. Blood. 1997;89(4):1394–404.PubMedGoogle Scholar
  115. 115.
    Brugieres L, Deley MC, Pacquement H, Meguerian-Bedoyan Z, Terrier-Lacombe MJ, Robert A, et al. CD30(+) anaplastic large-cell lymphoma in children: analysis of 82 patients enrolled in two consecutive studies of the French Society of Pediatric Oncology. Blood. 1998;92(10):3591–8.PubMedPubMedCentralGoogle Scholar
  116. 116.
    Alessandri AJ, Pritchard SL, Schultz KR, Massing BG. A population-based study of pediatric anaplastic large cell lymphoma. Cancer. 2002;94(6):1830–5.CrossRefGoogle Scholar
  117. 117.
    Hapgood G, Savage KJ. The biology and management of systemic anaplastic large cell lymphoma. Blood. 2015;126(1):17–25.CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Falini B, Pileri S, Zinzani PL, Carbone A, Zagonel V, Wolf-Peeters C, et al. ALK+ lymphoma: clinico-pathological findings and outcome. Blood. 1999;93(8):2697–706.PubMedPubMedCentralGoogle Scholar
  119. 119.
    Kadin ME. Anaplastic large cell lymphoma and its morphological variants. Cancer Surv. 1997;30:77–86.PubMedGoogle Scholar
  120. 120.
    Benharroch D, Meguerian-Bedoyan Z, Lamant L, Amin C, Brugieres L, Terrier-Lacombe MJ, et al. ALK-positive lymphoma: a single disease with a broad spectrum of morphology. Blood. 1998;91(6):2076–84.PubMedGoogle Scholar
  121. 121.
    Falini B, Bigerna B, Fizzotti M, Pulford K, Pileri SA, Delsol G, et al. ALK expression defines a distinct group of T/null lymphomas (“ALK lymphomas”) with a wide morphological spectrum. Am J Pathol. 1998;153(3):875–86.CrossRefPubMedPubMedCentralGoogle Scholar
  122. 122.
    Pileri SA, Pulford K, Mori S, Mason DY, Sabattini E, Roncador G, et al. Frequent expression of the NPM-ALK chimeric fusion protein in anaplastic large-cell lymphoma, lympho-histiocytic type. Am J Pathol. 1997;150(4):1207–11.PubMedPubMedCentralGoogle Scholar
  123. 123.
    Kinney MC, Collins RD, Greer JP, Whitlock JA, Sioutos N, Kadin ME. A small-cell-predominant variant of primary Ki-1 (CD30)+ T-cell lymphoma. Am J Surg Pathol. 1993;17(9):859–68.CrossRefGoogle Scholar
  124. 124.
    Vassallo J, Lamant L, Brugieres L, Gaillard F, Campo E, Brousset P, et al. ALK-positive anaplastic large cell lymphoma mimicking nodular sclerosis Hodgkin’s lymphoma: report of 10 cases. Am J Surg Pathol. 2006;30(2):223–9.CrossRefGoogle Scholar
  125. 125.
    Hodges KB, Collins RD, Greer JP, Kadin ME, Kinney MC. Transformation of the small cell variant Ki-1+ lymphoma to anaplastic large cell lymphoma: pathologic and clinical features. Am J Surg Pathol. 1999;23(1):49–58.CrossRefPubMedGoogle Scholar
  126. 126.
    Stein H, Foss HD, Durkop H, Marafioti T, Delsol G, Pulford K, et al. CD30(+) anaplastic large cell lymphoma: a review of its histopathologic, genetic, and clinical features. Blood. 2000;96(12):3681–95.PubMedGoogle Scholar
  127. 127.
    Penny RJ, Blaustein JC, Longtine JA, Pinkus GS. Ki-1-positive large cell lymphomas, a heterogenous group of neoplasms. Morphologic, immunophenotypic, genotypic, and clinical features of 24 cases. Cancer. 1991;68(2):362–73.CrossRefPubMedGoogle Scholar
  128. 128.
    Foss HD, Anagnostopoulos I, Araujo I, Assaf C, Demel G, Kummer JA, et al. Anaplastic large-cell lymphomas of T-cell and null-cell phenotype express cytotoxic molecules. Blood. 1996;88(10):4005–11.PubMedGoogle Scholar
  129. 129.
    Brousset P, Rochaix P, Chittal S, Rubie H, Robert A, Delsol G. High incidence of Epstein-Barr virus detection in Hodgkin’s disease and absence of detection in anaplastic large-cell lymphoma in children. Histopathology. 1993;23(2):189–91.CrossRefPubMedGoogle Scholar
  130. 130.
    Duyster J, Bai RY, Morris SW. Translocations involving anaplastic lymphoma kinase (ALK). Oncogene. 2001;20(40):5623–37.CrossRefPubMedPubMedCentralGoogle Scholar
  131. 131.
    Morris SW, Xue L, Ma Z, Kinney MC. Alk+ CD30+ lymphomas: a distinct molecular genetic subtype of non-Hodgkin’s lymphoma. Br J Haematol. 2001;113(2):275–95.CrossRefPubMedPubMedCentralGoogle Scholar
  132. 132.
    Pulford K, Lamant L, Espinos E, Jiang Q, Xue L, Turturro F, et al. The emerging normal and disease-related roles of anaplastic lymphoma kinase. Cell Mol Life Sci. 2004;61(23):2939–53.CrossRefPubMedPubMedCentralGoogle Scholar
  133. 133.
    Pulford K, Morris SW, Turturro F. Anaplastic lymphoma kinase proteins in growth control and cancer. J Cell Physiol. 2004;199(3):330–58.CrossRefPubMedPubMedCentralGoogle Scholar
  134. 134.
    Falini B. Anaplastic large cell lymphoma: pathological, molecular and clinical features. Br J Haematol. 2001;114(4):741–60.CrossRefPubMedPubMedCentralGoogle Scholar
  135. 135.
    Oschlies I, Lisfeld J, Lamant L, Nakazawa A, d’Amore ES, Hansson U, et al. ALK-positive anaplastic large cell lymphoma limited to the skin: clinical, histopathological and molecular analysis of 6 pediatric cases. A report from the ALCL99 study. Haematologica. 2013;98(1):50–6.CrossRefPubMedPubMedCentralGoogle Scholar
  136. 136.
    Onaindia A, Montes-Moreno S, Rodriguez-Pinilla SM, Batlle A, Gonzalez de Villambrosia S, Rodriguez AM, et al. Primary cutaneous anaplastic large cell lymphomas with 6p25.3 rearrangement exhibit particular histological features. Histopathology. 2015;66(6):846–55.CrossRefPubMedPubMedCentralGoogle Scholar
  137. 137.
    Parrilla Castellar ER, Jaffe ES, Said JW, Swerdlow SH, Ketterling RP, Knudson RA, et al. ALK-negative anaplastic large cell lymphoma is a genetically heterogeneous disease with widely disparate clinical outcomes. Blood. 2014;124(9):1473–80.CrossRefPubMedPubMedCentralGoogle Scholar
  138. 138.
    Karai LJ, Kadin ME, Hsi ED, Sluzevich JC, Ketterling RP, Knudson RA, et al. Chromosomal rearrangements of 6p25.3 define a new subtype of lymphomatoid papulosis. Am J Surg Pathol. 2013;37(8):1173–81.CrossRefPubMedPubMedCentralGoogle Scholar
  139. 139.
    Onciu M, Behm FG, Downing JR, Shurtleff SA, Raimondi SC, Ma Z, et al. ALK-positive plasmablastic B-cell lymphoma with expression of the NPM-ALK fusion transcript: report of 2 cases. Blood. 2003;102(7):2642–4.CrossRefPubMedPubMedCentralGoogle Scholar
  140. 140.
    Delsol G, Lamant L, Mariame B, Pulford K, Dastugue N, Brousset P, et al. A new subtype of large B-cell lymphoma expressing the ALK kinase and lacking the 2; 5 translocation. Blood. 1997;89(5):1483–90.PubMedGoogle Scholar
  141. 141.
    Chiarle R, Voena C, Ambrogio C, Piva R, Inghirami G. The anaplastic lymphoma kinase in the pathogenesis of cancer. Nat Rev Cancer. 2008;8(1):11–23.CrossRefPubMedPubMedCentralGoogle Scholar
  142. 142.
    Ferreri AJ, Govi S, Pileri SA, Savage KJ. Anaplastic large cell lymphoma, ALK-negative. Crit Rev Oncol Hematol. 2013;85(2):206–15.CrossRefPubMedPubMedCentralGoogle Scholar
  143. 143.
    Pham-Ledard A, Prochazkova-Carlotti M, Laharanne E, Vergier B, Jouary T, Beylot-Barry M, et al. IRF4 gene rearrangements define a subgroup of CD30-positive cutaneous T-cell lymphoma: a study of 54 cases. J Invest Dermatol. 2010;130(3):816–25.CrossRefPubMedPubMedCentralGoogle Scholar
  144. 144.
    Mellgren K, Attarbaschi A, Abla O, Alexander S, Bomken S, Bubanska E, et al. Non-anaplastic peripheral T cell lymphoma in children and adolescents-an international review of 143 cases. Ann Hematol. 2016;95(8):1295–305.CrossRefPubMedPubMedCentralGoogle Scholar
  145. 145.
    Kontny U, Oschlies I, Woessmann W, Burkhardt B, Lisfeld J, Salzburg J, et al. Non-anaplastic peripheral T-cell lymphoma in children and adolescents--a retrospective analysis of the NHL-BFM study group. Br J Haematol. 2015;168(6):835–44.CrossRefPubMedPubMedCentralGoogle Scholar
  146. 146.
    Windsor R, Stiller C, Webb D. Peripheral T-cell lymphoma in childhood: population-based experience in the United Kingdom over 20 years. Pediatr Blood Cancer. 2008;50(4):784–7.CrossRefPubMedPubMedCentralGoogle Scholar
  147. 147.
    Jaffe ES. Pathobiology of peripheral T-cell lymphomas. Hematology Am Soc Hematol Educ Program. 2006;2006:317–22.CrossRefGoogle Scholar
  148. 148.
    Dojcinov SD, Fend F, Quintanilla-Martinez L. EBV-positive lymphoproliferations of B- T- and NK-cell derivation in non-immunocompromised hosts. Pathogens. 2018;7(1):28.CrossRefPubMedPubMedCentralGoogle Scholar
  149. 149.
    Quintanilla-Martinez L, Kumar S, Fend F, Reyes E, Teruya-Feldstein J, Kingma DW, et al. Fulminant EBV(+) T-cell lymphoproliferative disorder following acute/chronic EBV infection: a distinct clinicopathologic syndrome. Blood. 2000;96(2):443–51.PubMedGoogle Scholar
  150. 150.
    Belhadj K, Reyes F, Farcet JP, Tilly H, Bastard C, Angonin R, et al. Hepatosplenic gammadelta T-cell lymphoma is a rare clinicopathologic entity with poor outcome: report on a series of 21 patients. Blood. 2003;102(13):4261–9.CrossRefGoogle Scholar
  151. 151.
    Huppmann AR, Xi L, Raffeld M, Pittaluga S, Jaffe ES. Subcutaneous panniculitis-like T-cell lymphoma in the pediatric age group: a lymphoma of low malignant potential. Pediatr Blood Cancer. 2013;60(7):1165–70.CrossRefPubMedPubMedCentralGoogle Scholar
  152. 152.
    Oschlies I, Simonitsch-Klupp I, Maldyk J, Konovalov D, Abramov D, Myakova N, et al. Subcutaneous panniculitis-like T-cell lymphoma in children: a detailed clinicopathological description of 11 multifocal cases with a high frequency of haemophagocytic syndrome. Br J Dermatol. 2015;172(3):793–7.CrossRefPubMedPubMedCentralGoogle Scholar
  153. 153.
    Willemze R, Jansen PM, Cerroni L, Berti E, Santucci M, Assaf C, et al. Subcutaneous panniculitis-like T-cell lymphoma: definition, classification, and prognostic factors: an EORTC Cutaneous Lymphoma Group Study of 83 cases. Blood. 2008;111(2):838–45.CrossRefGoogle Scholar
  154. 154.
    Pincus LB, LeBoit PE, McCalmont TH, Ricci R, Buzio C, Fox LP, et al. Subcutaneous panniculitis-like T-cell lymphoma with overlapping clinicopathologic features of lupus erythematosus: coexistence of 2 entities? Am J Dermatopathol. 2009;31(6):520–6.CrossRefGoogle Scholar
  155. 155.
    Rodriguez-Pinilla SM, Ortiz-Romero PL, Monsalvez V, Tomas IE, Almagro M, Sevilla A, et al. TCR-gamma expression in primary cutaneous T-cell lymphomas. Am J Surg Pathol. 2013;37(3):375–84.CrossRefGoogle Scholar
  156. 156.
    Rodriguez-Justo M, Attygalle AD, Munson P, Roncador G, Marafioti T, Piris MA. Angioimmunoblastic T-cell lymphoma with hyperplastic germinal centres: a neoplasia with origin in the outer zone of the germinal centre? Clinicopathological and immunohistochemical study of 10 cases with follicular T-cell markers. Mod Pathol. 2009;22(6):753–61.CrossRefGoogle Scholar
  157. 157.
    Attygalle AD, Chuang SS, Diss TC, Du MQ, Isaacson PG, Dogan A. Distinguishing angioimmunoblastic T-cell lymphoma from peripheral T-cell lymphoma, unspecified, using morphology, immunophenotype and molecular genetics. Histopathology. 2007;50(4):498–508.CrossRefGoogle Scholar
  158. 158.
    Schlegelberger B, Zhang Y, Weber-Matthiesen K, Grote W. Detection of aberrant clones in nearly all cases of angioimmunoblastic lymphadenopathy with dysproteinemia-type T-cell lymphoma by combined interphase and metaphase cytogenetics. Blood. 1994;84(8):2640–8.PubMedGoogle Scholar
  159. 159.
    Cortes JR, Palomero T. The curious origins of angioimmunoblastic T-cell lymphoma. Curr Opin Hematol. 2016;23(4):434–43.CrossRefGoogle Scholar
  160. 160.
    Chinnock R, Webber SA, Dipchand AI, Brown RN, George JF, Pediatric Heart Transplant Study. A 16-year multi-institutional study of the role of age and EBV status on PTLD incidence among pediatric heart transplant recipients. Am J Transplant. 2012;12(11):3061–8.CrossRefGoogle Scholar
  161. 161.
    Green M, Michaels MG. Epstein-Barr virus infection and posttransplant lymphoproliferative disorder. Am J Transplant. 2013;13(Suppl 3):41–54; quiz.CrossRefGoogle Scholar
  162. 162.
    Webber SA, Naftel DC, Fricker FJ, Olesnevich P, Blume ED, Addonizio L, et al. Lymphoproliferative disorders after paediatric heart transplantation: a multi-institutional study. Lancet. 2006;367(9506):233–9.CrossRefGoogle Scholar
  163. 163.
    Rouce RH, Louis CU, Heslop HE. Epstein-Barr virus lymphoproliferative disease after hematopoietic stem cell transplant. Curr Opin Hematol. 2014;21(6):476–81.CrossRefPubMedPubMedCentralGoogle Scholar
  164. 164.
    Uhlin M, Wikell H, Sundin M, Blennow O, Maeurer M, Ringden O, et al. Risk factors for Epstein-Barr virus-related post-transplant lymphoproliferative disease after allogeneic hematopoietic stem cell transplantation. Haematologica. 2014;99(2):346–52.CrossRefPubMedPubMedCentralGoogle Scholar
  165. 165.
    Ramos E, Hernandez F, Andres A, Martinez-Ojinaga E, Molina M, Sarria J, et al. Post-transplant lymphoproliferative disorders and other malignancies after pediatric intestinal transplantation: incidence, clinical features and outcome. Pediatr Transplant. 2013;17(5):472–8.CrossRefGoogle Scholar
  166. 166.
    Bakker NA, van Imhoff GW, Verschuuren EA, van Son WJ, van der Heide JJ H, Veeger NJ, et al. Early onset post-transplant lymphoproliferative disease is associated with allograft localization. Clin Transpl. 2005;19(3):327–34.CrossRefGoogle Scholar
  167. 167.
    Nelson BP, Wolniak KL, Evens A, Chenn A, Maddalozzo J, Proytcheva M. Early posttransplant lymphoproliferative disease: clinicopathologic features and correlation with mTOR signaling pathway activation. Am J Clin Pathol. 2012;138(4):568–78.CrossRefGoogle Scholar
  168. 168.
    Evens AM, Roy R, Sterrenberg D, Moll MZ, Chadburn A, Gordon LI. Post-transplantation lymphoproliferative disorders: diagnosis, prognosis, and current approaches to therapy. Curr Oncol Rep. 2010;12(6):383–94.CrossRefGoogle Scholar
  169. 169.
    Vakiani E, Nandula SV, Subramaniyam S, Keller CE, Alobeid B, Murty VV, et al. Cytogenetic analysis of B-cell posttransplant lymphoproliferations validates the World Health Organization classification and suggests inclusion of florid follicular hyperplasia as a precursor lesion. Hum Pathol. 2007;38(2):315–25.CrossRefGoogle Scholar
  170. 170.
    Lones MA, Mishalani S, Shintaku IP, Weiss LM, Nichols WS, Said JW. Changes in tonsils and adenoids in children with posttransplant lymphoproliferative disorder: report of three cases with early involvement of Waldeyer’s ring. Hum Pathol. 1995;26(5):525–30.CrossRefPubMedPubMedCentralGoogle Scholar
  171. 171.
    Knowles DM, Cesarman E, Chadburn A, Frizzera G, Chen J, Rose EA, et al. Correlative morphologic and molecular genetic analysis demonstrates three distinct categories of posttransplantation lymphoproliferative disorders. Blood. 1995;85(2):552–65.PubMedGoogle Scholar
  172. 172.
    Pitman SD, Huang Q, Zuppan CW, Rowsell EH, Cao JD, Berdeja JG, et al. Hodgkin lymphoma-like posttransplant lymphoproliferative disorder (HL-like PTLD) simulates monomorphic B-cell PTLD both clinically and pathologically. Am J Surg Pathol. 2006;30(4):470–6.CrossRefPubMedPubMedCentralGoogle Scholar
  173. 173.
    Chetty R, Biddolph S, Gatter K. An immunohistochemical analysis of Reed-Sternberg-like cells in posttransplantation lymphoproliferative disorders: the possible pathogenetic relationship to Reed-Sternberg cells in Hodgkin’s disease and Reed-Sternberg-like cells in non-Hodgkin’s lymphomas and reactive conditions. Hum Pathol. 1997;28(4):493–8.CrossRefGoogle Scholar
  174. 174.
    Al-Mansour Z, Nelson BP, Evens AM. Post-transplant lymphoproliferative disease (PTLD): risk factors, diagnosis, and current treatment strategies. Curr Hematol Malig Rep. 2013;8(3):173–83.CrossRefPubMedPubMedCentralGoogle Scholar
  175. 175.
    Gibson SE, Swerdlow SH, Craig FE, Surti U, Cook JR, Nalesnik MA, et al. EBV-positive extranodal marginal zone lymphoma of mucosa-associated lymphoid tissue in the posttransplant setting: a distinct type of posttransplant lymphoproliferative disorder? Am J Surg Pathol. 2011;35(6):807–15.CrossRefGoogle Scholar
  176. 176.
    Wistinghausen B, Gross TG, Bollard C. Post-transplant lymphoproliferative disease in pediatric solid organ transplant recipients. Pediatr Hematol Oncol. 2013;30(6):520–31.CrossRefPubMedGoogle Scholar
  177. 177.
    Herreman A, Dierickx D, Morscio J, Camps J, Bittoun E, Verhoef G, et al. Clinicopathological characteristics of posttransplant lymphoproliferative disorders of T-cell origin: single-center series of nine cases and meta-analysis of 147 reported cases. Leuk Lymphoma. 2013;54(10):2190–9.CrossRefPubMedGoogle Scholar
  178. 178.
    Margolskee E, Jobanputra V, Jain P, Chen J, Ganapathi K, Nahum O, et al. Genetic landscape of T- and NK-cell post-transplant lymphoproliferative disorders. Oncotarget. 2016;7(25):37636–48.CrossRefPubMedPubMedCentralGoogle Scholar
  179. 179.
    Swerdlow SH, Jaffe ES, Brousset P, Chan JK, de Leval L, Gaulard P, et al. Cytotoxic T-cell and NK-cell lymphomas: current questions and controversies. Am J Surg Pathol. 2014;38(10):e60–71.CrossRefPubMedPubMedCentralGoogle Scholar
  180. 180.
    Sivaraman P, Lye WC. Epstein-Barr virus-associated T-cell lymphoma in solid organ transplant recipients. Biomed Pharmacother. 2001;55(7):366–8.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Christoph Kornauth
    • 1
  • Ana-Iris Schiefer
    • 1
  • Ingrid Simonitsch-Klupp
    • 1
    Email author
  1. 1.Department of PathologyMedical University of ViennaViennaAustria

Personalised recommendations