Advertisement

Pathogenesis of T-Non-Hodgkin’s Lymphoma

  • Jonathan Bond
  • Owen Patrick SmithEmail author
Chapter

Abstract

T-lymphoblastic lymphoma (T-LBL) is by far the most common T-NHL in children and adolescents, typically presenting with a mediastinal mass and advanced disease. The molecular pathology of T-LBL is similar to T-acute lymphoblastic leukemia (T-ALL), with frequent activating mutations of the NOTCH1 pathway and signaling kinase molecules, and translocations of the T-receptor gene (TR) loci. There are several recognized differences with the T-ALL genotype, for example, differing patterns of loss of heterozygosity on chromosome 6q (6qLOH) that have been reported to predict prognosis. As in T-ALL, T-LBL can been categorized according to TR rearrangement status and transcriptional profiling. Current treatment efforts are based on therapy stratification according to disease risk, which is principally defined by genotype (i.e., NOTCH1/FBXW7 mutational status).

Other T-NHLs in this age group are classified among a heterogeneous group of peripheral T-cell lymphomas (PTCL). Categorization of these rare diseases continues to evolve, in concert with advancements in knowledge of their diverse molecular pathology.

Keywords

T-lymphoblastic lymphoma NOTCH1 Loss of heterozygosity chromosome 6q T-receptor genes Genetic risk classifier Peripheral T-cell lymphoma 

References

  1. 1.
    You MJ, Medeiros LJ, Hsi ED. T-lymphoblastic leukemia/lymphoma. Am J Clin Pathol. 2015;144(3):411–22.CrossRefGoogle Scholar
  2. 2.
    Smock KJ, Nelson M, Tripp SR, Sanger WG, Abromowitch M, Cairo MS, et al. Characterization of childhood precursor T-lymphoblastic lymphoma by immunophenotyping and fluorescent in situ hybridization: a report from the Children’s Oncology Group. Pediatr Blood Cancer. 2008;51(4):489–94.CrossRefGoogle Scholar
  3. 3.
    Burkhardt B, Mueller S, Khanam T, Perkins SL. Current status and future directions of T-lymphoblastic lymphoma in children and adolescents. Br J Haematol. 2016;173(4):545–59.CrossRefGoogle Scholar
  4. 4.
    Swerdlow SH. Cancer IAfRo, organization WH. International Agency for Research on Cancer: WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues; 2008.Google Scholar
  5. 5.
    Burkhardt B. Paediatric lymphoblastic T-cell leukaemia and lymphoma: one or two diseases? Br J Haematol. 2010;149(5):653–68.CrossRefGoogle Scholar
  6. 6.
    Uyttebroeck A, Vanhentenrijk V, Hagemeijer A, Boeckx N, Renard M, Wlodarska I, et al. Is there a difference in childhood T-cell acute lymphoblastic leukaemia and T-cell lymphoblastic lymphoma? Leuk Lymphoma. 2007;48(9):1745–54.CrossRefGoogle Scholar
  7. 7.
    Burkhardt B, Bruch J, Zimmermann M, Strauch K, Parwaresch R, Ludwig WD, et al. Loss of heterozygosity on chromosome 6q14-q24 is associated with poor outcome in children and adolescents with T-cell lymphoblastic lymphoma. Leukemia. 2006;20(8):1422–9.CrossRefGoogle Scholar
  8. 8.
    Lones MA, Heerema NA, Le Beau MM, Sposto R, Perkins SL, Kadin ME, et al. Chromosome abnormalities in advanced stage lymphoblastic lymphoma of children and adolescents: a report from CCG-E08. Cancer Genet Cytogenet. 2007;172(1):1–11.CrossRefGoogle Scholar
  9. 9.
    Sekimizu M, Sunami S, Nakazawa A, Hayashi Y, Okimoto Y, Saito AM, et al. Chromosome abnormalities in advanced stage T-cell lymphoblastic lymphoma of children and adolescents: a report from Japanese Paediatric Leukaemia/Lymphoma Study Group (JPLSG) and review of the literature. Br J Haematol. 2011;154(5):612–7.CrossRefGoogle Scholar
  10. 10.
    Cave H, Suciu S, Preudhomme C, Poppe B, Robert A, Uyttebroeck A, et al. Clinical significance of HOX11L2 expression linked to t(5;14)(q35;q32), of HOX11 expression, and of SIL-TAL fusion in childhood T-cell malignancies: results of EORTC studies 58881 and 58951. Blood. 2004;103(2):442–50.CrossRefGoogle Scholar
  11. 11.
    Baleydier F, Decouvelaere AV, Bergeron J, Gaulard P, Canioni D, Bertrand Y, et al. T cell receptor genotyping and HOXA/TLX1 expression define three T lymphoblastic lymphoma subsets which might affect clinical outcome. Clin Cancer Res. 2008;14(3):692–700.CrossRefGoogle Scholar
  12. 12.
    Dadi S, Le Noir S, Payet-Bornet D, Lhermitte L, Zacarias-Cabeza J, Bergeron J, et al. TLX homeodomain oncogenes mediate T cell maturation arrest in T-ALL via interaction with ETS1 and suppression of TCRalpha gene expression. Cancer Cell. 2012;21(4):563–76.CrossRefGoogle Scholar
  13. 13.
    Weng AP, Ferrando AA, Lee W, JPt M, Silverman LB, Sanchez-Irizarry C, et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science. 2004;306(5694):269–71.CrossRefGoogle Scholar
  14. 14.
    Van Vlierberghe P, van Grotel M, Tchinda J, Lee C, Beverloo HB, van der Spek PJ, et al. The recurrent SET-NUP214 fusion as a new HOXA activation mechanism in pediatric T-cell acute lymphoblastic leukemia. Blood. 2008;111(9):4668–80.CrossRefGoogle Scholar
  15. 15.
    Graux C, Cools J, Melotte C, Quentmeier H, Ferrando A, Levine R, et al. Fusion of NUP214 to ABL1 on amplified episomes in T-cell acute lymphoblastic leukemia. Nat Genet. 2004;36(10):1084–9.CrossRefGoogle Scholar
  16. 16.
    Burkhardt B, Moericke A, Klapper W, Greene F, Salzburg J, Damm-Welk C, et al. Pediatric precursor T lymphoblastic leukemia and lymphoblastic lymphoma: differences in the common regions with loss of heterozygosity at chromosome 6q and their prognostic impact. Leuk Lymphoma. 2008;49(3):451–61.CrossRefGoogle Scholar
  17. 17.
    Bonn BR, Huge A, Rohde M, Oschlies I, Klapper W, Voss R, et al. Whole exome sequencing hints at a unique mutational profile of paediatric T-cell lymphoblastic lymphoma. Br J Haematol. 2015;168(2):308–13.CrossRefGoogle Scholar
  18. 18.
    Callens C, Baleydier F, Lengline E, Ben Abdelali R, Petit A, Villarese P, et al. Clinical impact of NOTCH1 and/or FBXW7 mutations, FLASH deletion, and TCR status in pediatric T-cell lymphoblastic lymphoma. J Clin Oncol. 2012;30(16):1966–73.CrossRefGoogle Scholar
  19. 19.
    Jun JI, Chung CW, Lee HJ, Pyo JO, Lee KN, Kim NS, et al. Role of FLASH in caspase-8-mediated activation of NF-kappaB: dominant-negative function of FLASH mutant in NF-kappaB signaling pathway. Oncogene. 2005;24(4):688–96.CrossRefGoogle Scholar
  20. 20.
    Alm-Kristiansen AH, Saether T, Matre V, Gilfillan S, Dahle O, Gabrielsen OS. FLASH acts as a co-activator of the transcription factor c-Myb and localizes to active RNA polymerase II foci. Oncogene. 2008;27(34):4644–56.CrossRefGoogle Scholar
  21. 21.
    Okuda T, Shurtleff SA, Valentine MB, Raimondi SC, Head DR, Behm F, et al. Frequent deletion of p16INK4a/MTS1 and p15INK4b/MTS2 in pediatric acute lymphoblastic leukemia. Blood. 1995;85(9):2321–30.PubMedGoogle Scholar
  22. 22.
    Krieger D, Moericke A, Oschlies I, Zimmermann M, Schrappe M, Reiter A, et al. Frequency and clinical relevance of DNA microsatellite alterations of the CDKN2A/B, ATM and p53 gene loci: a comparison between pediatric precursor T-cell lymphoblastic lymphoma and T-cell lymphoblastic leukemia. Haematologica. 2010;95(1):158–62.CrossRefGoogle Scholar
  23. 23.
    Basso K, Mussolin L, Lettieri A, Brahmachary M, Lim WK, Califano A, et al. T-cell lymphoblastic lymphoma shows differences and similarities with T-cell acute lymphoblastic leukemia by genomic and gene expression analyses. Genes Chromosomes Cancer. 2011;50(12):1063–75.CrossRefGoogle Scholar
  24. 24.
    Sulong S, Moorman AV, Irving JA, Strefford JC, Konn ZJ, Case MC, et al. A comprehensive analysis of the CDKN2A gene in childhood acute lymphoblastic leukemia reveals genomic deletion, copy number neutral loss of heterozygosity, and association with specific cytogenetic subgroups. Blood. 2009;113(1):100–7.CrossRefGoogle Scholar
  25. 25.
    Lowe SW, Sherr CJ. Tumor suppression by Ink4a-Arf: progress and puzzles. Curr Opin Genet Dev. 2003;13(1):77–83.CrossRefGoogle Scholar
  26. 26.
    Volanakis EJ, Boothby MR, Sherr CJ. Epigenetic regulation of the Ink4a-Arf (Cdkn2a) tumor suppressor locus in the initiation and progression of Notch1-driven T cell acute lymphoblastic leukemia. Exp Hematol. 2013;41(4):377–86.CrossRefGoogle Scholar
  27. 27.
    Di Cello F, Dhara S, Hristov AC, Kowalski J, Elbahloul O, Hillion J, et al. Inactivation of the Cdkn2a locus cooperates with HMGA1 to drive T-cell leukemogenesis. Leuk Lymphoma. 2013;54(8):1762–8.CrossRefGoogle Scholar
  28. 28.
    Sanchez-Martin M, Ferrando A. The NOTCH1-MYC highway toward T-cell acute lymphoblastic leukemia. Blood. 2017;129(9):1124–33.CrossRefGoogle Scholar
  29. 29.
    Thompson BJ, Buonamici S, Sulis ML, Palomero T, Vilimas T, Basso G, et al. The SCFFBW7 ubiquitin ligase complex as a tumor suppressor in T cell leukemia. J Exp Med. 2007;204(8):1825–35.CrossRefGoogle Scholar
  30. 30.
    Park MJ, Taki T, Oda M, Watanabe T, Yumura-Yagi K, Kobayashi R, et al. FBXW7 and NOTCH1 mutations in childhood T cell acute lymphoblastic leukaemia and T cell non-Hodgkin lymphoma. Br J Haematol. 2009;145(2):198–206.CrossRefGoogle Scholar
  31. 31.
    Palomero T, Dominguez M, Ferrando AA. The role of the PTEN/AKT pathway in NOTCH1-induced leukemia. Cell Cycle. 2008;7(8):965–70.CrossRefGoogle Scholar
  32. 32.
    Balbach ST, Makarova O, Bonn BR, Zimmermann M, Rohde M, Oschlies I, et al. Proposal of a genetic classifier for risk group stratification in pediatric T-cell lymphoblastic lymphoma reveals differences from adult T-cell lymphoblastic leukemia. Leukemia. 2016;30(4):970–3.CrossRefGoogle Scholar
  33. 33.
    Roncero AM, Lopez-Nieva P, Cobos-Fernandez MA, Villa-Morales M, Gonzalez-Sanchez L, Lopez-Lorenzo JL, et al. Contribution of JAK2 mutations to T-cell lymphoblastic lymphoma development. Leukemia. 2016;30(1):94–103.CrossRefGoogle Scholar
  34. 34.
    Strehl S, Nebral K, Konig M, Harbott J, Strobl H, Ratei R, et al. ETV6-NCOA2: a novel fusion gene in acute leukemia associated with coexpression of T-lymphoid and myeloid markers and frequent NOTCH1 mutations. Clin Cancer Res. 2008;14(4):977–83.CrossRefGoogle Scholar
  35. 35.
    Bond J, Touzart A, Nadal N, Trinquand A, Thouvenin S, Da Cruz V, et al. Early thymic precursor-like lymphomatous presentation of the ETV6-NCOA2 translocation. Br J Haematol. 2017;181:392–4.CrossRefGoogle Scholar
  36. 36.
    Asnafi V, Beldjord K, Boulanger E, Comba B, Le Tutour P, Estienne MH, et al. Analysis of TCR, pT alpha, and RAG-1 in T-acute lymphoblastic leukemias improves understanding of early human T-lymphoid lineage commitment. Blood. 2003;101(7):2693–703.CrossRefGoogle Scholar
  37. 37.
    Spits H. Development of alphabeta T cells in the human thymus. Nat Rev Immunol. 2002;2(10):760–72.CrossRefGoogle Scholar
  38. 38.
    Blom B, Verschuren MC, Heemskerk MH, Bakker AQ, van Gastel-Mol EJ, Wolvers-Tettero IL, et al. TCR gene rearrangements and expression of the pre-T cell receptor complex during human T-cell differentiation. Blood. 1999;93(9):3033–43.PubMedGoogle Scholar
  39. 39.
    Gutierrez A, Dahlberg SE, Neuberg DS, Zhang J, Grebliunaite R, Sanda T, et al. Absence of biallelic TCRgamma deletion predicts early treatment failure in pediatric T-cell acute lymphoblastic leukemia. J Clin Oncol. 2010;28(24):3816–23.CrossRefGoogle Scholar
  40. 40.
    Patrick K, Wade R, Goulden N, Mitchell C, Moorman AV, Rowntree C, et al. Outcome for children and young people with Early T-cell precursor acute lymphoblastic leukaemia treated on a contemporary protocol, UKALL 2003. Br J Haematol. 2014;166(3):421–4.CrossRefGoogle Scholar
  41. 41.
    Wood BL, Winter SS, Dunsmore KP, Devidas M, Chen S, Asselin B, et al. T-lymphoblastic leukemia (T-ALL) shows excellent outcome, lack of significance of the early Thymic precursor (ETP) Immunophenotype, and validation of the prognostic value of end-induction minimal residual disease (MRD) in Children’s oncology group (COG) Study AALL0434. Blood. 2014;124(21):1.Google Scholar
  42. 42.
    Ferrando AA, Neuberg DS, Staunton J, Loh ML, Huard C, Raimondi SC, et al. Gene expression signatures define novel oncogenic pathways in T cell acute lymphoblastic leukemia. Cancer Cell. 2002;1(1):75–87.CrossRefGoogle Scholar
  43. 43.
    Soulier J, Clappier E, Cayuela JM, Regnault A, Garcia-Peydro M, Dombret H, et al. HOXA genes are included in genetic and biologic networks defining human acute T-cell leukemia (T-ALL). Blood. 2005;106(1):274–86.CrossRefGoogle Scholar
  44. 44.
    Homminga I, Pieters R, Langerak AW, de Rooi JJ, Stubbs A, Verstegen M, et al. Integrated transcript and genome analyses reveal NKX2-1 and MEF2C as potential oncogenes in T cell acute lymphoblastic leukemia. Cancer Cell. 2011;19(4):484–97.CrossRefGoogle Scholar
  45. 45.
    Raetz EA, Perkins SL, Bhojwani D, Smock K, Philip M, Carroll WL, et al. Gene expression profiling reveals intrinsic differences between T-cell acute lymphoblastic leukemia and T-cell lymphoblastic lymphoma. Pediatr Blood Cancer. 2006;47(2):130–40.CrossRefGoogle Scholar
  46. 46.
    Mussolin L, Holmes AB, Romualdi C, Sales G, D’Amore ES, Ghisi M, et al. An aberrant microRNA signature in childhood T-cell lymphoblastic lymphoma affecting CDKN1B expression, NOTCH1 and growth factor signaling pathways. Leukemia. 2014;28(9):1909–12.CrossRefGoogle Scholar
  47. 47.
    Bonn BR, Rohde M, Zimmermann M, Krieger D, Oschlies I, Niggli F, et al. Incidence and prognostic relevance of genetic variations in T-cell lymphoblastic lymphoma in childhood and adolescence. Blood. 2013;121(16):3153–60.CrossRefGoogle Scholar
  48. 48.
    Kontny U, Oschlies I, Woessmann W, Burkhardt B, Lisfeld J, Salzburg J, et al. Non-anaplastic peripheral T-cell lymphoma in children and adolescents--a retrospective analysis of the NHL-BFM study group. Br J Haematol. 2015;168(6):835–44.CrossRefGoogle Scholar
  49. 49.
    Kobayashi R, Yamato K, Tanaka F, Takashima Y, Inada H, Kikuchi A, et al. Retrospective analysis of non-anaplastic peripheral T-cell lymphoma in pediatric patients in Japan. Pediatr Blood Cancer. 2010;54(2):212–5.PubMedGoogle Scholar
  50. 50.
    Windsor R, Stiller C, Webb D. Peripheral T-cell lymphoma in childhood: population-based experience in the United Kingdom over 20 years. Pediatr Blood Cancer. 2008;50(4):784–7.CrossRefGoogle Scholar
  51. 51.
    Mellgren K, Attarbaschi A, Abla O, Alexander S, Bomken S, Bubanska E, et al. Non-anaplastic peripheral T cell lymphoma in children and adolescents-an international review of 143 cases. Ann Hematol. 2016;95(8):1295–305.CrossRefGoogle Scholar
  52. 52.
    Hutchison RE, Laver JH, Chang M, Muzzafar T, Desai S, Murphy S, et al. Non-anaplastic peripheral t-cell lymphoma in childhood and adolescence: a Children’s oncology group study. Pediatr Blood Cancer. 2008;51(1):29–33.CrossRefGoogle Scholar
  53. 53.
    Lepretre S, Buchonnet G, Stamatoullas A, Lenain P, Duval C, d’Anjou J, et al. Chromosome abnormalities in peripheral T-cell lymphoma. Cancer Genet Cytogenet. 2000;117(1):71–9.CrossRefGoogle Scholar
  54. 54.
    Nelson M, Horsman DE, Weisenburger DD, Gascoyne RD, Dave BJ, Loberiza FR, et al. Cytogenetic abnormalities and clinical correlations in peripheral T-cell lymphoma. Br J Haematol. 2008;141(4):461–9.CrossRefGoogle Scholar
  55. 55.
    Sakata-Yanagimoto M, Enami T, Yoshida K, Shiraishi Y, Ishii R, Miyake Y, et al. Somatic RHOA mutation in angioimmunoblastic T cell lymphoma. Nat Genet. 2014;46(2):171–5.CrossRefGoogle Scholar
  56. 56.
    Yoo HY, Sung MK, Lee SH, Kim S, Lee H, Park S, et al. A recurrent inactivating mutation in RHOA GTPase in angioimmunoblastic T cell lymphoma. Nat Genet. 2014;46(4):371–5.CrossRefGoogle Scholar
  57. 57.
    Palomero T, Couronne L, Khiabanian H, Kim MY, Ambesi-Impiombato A, Perez-Garcia A, et al. Recurrent mutations in epigenetic regulators, RHOA and FYN kinase in peripheral T cell lymphomas. Nat Genet. 2014;46(2):166–70.CrossRefGoogle Scholar
  58. 58.
    Abate F, da Silva-Almeida AC, Zairis S, Robles-Valero J, Couronne L, Khiabanian H, et al. Activating mutations and translocations in the guanine exchange factor VAV1 in peripheral T-cell lymphomas. Proc Natl Acad Sci U S A. 2017;114(4):764–9.CrossRefGoogle Scholar
  59. 59.
    Boddicker RL, Razidlo GL, Dasari S, Zeng Y, Hu G, Knudson RA, et al. Integrated mate-pair and RNA sequencing identifies novel, targetable gene fusions in peripheral T-cell lymphoma. Blood. 2016;128(9):1234–45.CrossRefGoogle Scholar
  60. 60.
    Dobay MP, Lemonnier F, Missiaglia E, Bastard C, Vallois D, Jais JP, et al. Integrative clinicopathological and molecular analyses of angioimmunoblastic T-cell lymphoma and other nodal lymphomas of follicular helper T-cell origin. Haematologica. 2017;102(4):e148–e51.CrossRefGoogle Scholar
  61. 61.
    Lemonnier F, Couronne L, Parrens M, Jais JP, Travert M, Lamant L, et al. Recurrent TET2 mutations in peripheral T-cell lymphomas correlate with TFH-like features and adverse clinical parameters. Blood. 2012;120(7):1466–9.CrossRefGoogle Scholar
  62. 62.
    Cairns RA, Iqbal J, Lemonnier F, Kucuk C, de Leval L, Jais JP, et al. IDH2 mutations are frequent in angioimmunoblastic T-cell lymphoma. Blood. 2012;119(8):1901–3.CrossRefGoogle Scholar
  63. 63.
    Rohr J, Guo S, Huo J, Bouska A, Lachel C, Li Y, et al. Recurrent activating mutations of CD28 in peripheral T-cell lymphomas. Leukemia. 2016;30(5):1062–70.CrossRefGoogle Scholar
  64. 64.
    Vallois D, Dobay MP, Morin RD, Lemonnier F, Missiaglia E, Juilland M, et al. Activating mutations in genes related to TCR signaling in angioimmunoblastic and other follicular helper T-cell-derived lymphomas. Blood. 2016;128(11):1490–502.CrossRefGoogle Scholar
  65. 65.
    Vasmatzis G, Johnson SH, Knudson RA, Ketterling RP, Braggio E, Fonseca R, et al. Genome-wide analysis reveals recurrent structural abnormalities of TP63 and other p53-related genes in peripheral T-cell lymphomas. Blood. 2012;120(11):2280–9.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Systems Biology Ireland, School of MedicineUniversity College DublinDublinIreland
  2. 2.University College DublinDublinIreland
  3. 3.Our Lady’s Children’s Hospital, CrumlinDublinIreland
  4. 4.Trinity College DublinDublinIreland

Personalised recommendations