Advertisement

Long-Term Outcomes in Survivors of Childhood and Adolescent Non-Hodgkin Lymphoma

  • Paul C. NathanEmail author
  • Karin P. S. Langenberg-Ververgaert
  • Noelle Cullinan
Chapter

Abstract

Excellent survival outcomes in children and adolescents with non-Hodgkin lymphoma (NHL) have led to an increased focus on long-term outcomes in survivors. The evolution of NHL treatment strategies has been guided by efforts to reduce exposure to treatment modalities associated with risk for late effects, such as cranial radiation and higher doses of anthracyclines and alkylating agents, while maintaining or improving survival outcomes. Despite these efforts, many survivors of NHL will suffer long-term physical, psychological, neurocognitive, or psychosocial impacts of their cancer and its treatment or will die prematurely. Specific late effects of therapy include subsequent cancers, cardiac disease, and impaired fertility. As a consequence, all survivors of NHL require lifelong care adapted to their specific risks. This includes provision of a treatment summary and survivor care plan, regular surveillance for late effects, and access to appropriate medical and psychological services, with the goal of maximizing both health and health-related quality of life.

Keywords

Survivorship Late effects Surveillance 

References

  1. 1.
    Howlader N, et al. SEER cancer statistics review, 1975-2014. Bethesda: National Cancer Institute; 2017.Google Scholar
  2. 2.
    Phillips SM, et al. Survivors of childhood cancer in the United States: prevalence and burden of morbidity. Cancer Epidemiol Biomark Prev. 2015;24(4):653–63.CrossRefGoogle Scholar
  3. 3.
    Nathan PC, et al. Financial hardship and the economic effect of childhood cancer survivorship. J Clin Oncol. 2018;36(21):2198–205.PubMedCrossRefGoogle Scholar
  4. 4.
    Goldman S, et al. Rituximab and FAB/LMB 96 chemotherapy in children with Stage III/IV B-cell non-Hodgkin lymphoma: a Children’s Oncology Group report. Leukemia. 2013;27(5):1174–7.CrossRefGoogle Scholar
  5. 5.
    Meinhardt A, et al. Phase II window study on rituximab in newly diagnosed pediatric mature B-cell non-Hodgkin’s lymphoma and Burkitt leukemia. J Clin Oncol. 2010;28(19):3115–21.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Minard-Colin V, et al. Non-Hodgkin lymphoma in children and adolescents: progress through effective collaboration, current knowledge, and challenges ahead. J Clin Oncol. 2015;33(27):2963–74.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Attarbaschi A, et al. Limited stage I disease is not necessarily indicative of an excellent prognosis in childhood anaplastic large cell lymphoma. Blood. 2011;117(21):5616–9.PubMedCrossRefGoogle Scholar
  8. 8.
    Wrobel G, et al. Safety assessment of intensive induction therapy in childhood anaplastic large cell lymphoma: report of the ALCL99 randomised trial. Pediatr Blood Cancer. 2011;56(7):1071–7.PubMedCrossRefGoogle Scholar
  9. 9.
    Brugières L, et al. Impact of the methotrexate administration dose on the need for intrathecal treatment in children and adolescents with anaplastic large-cell lymphoma: results of a randomized trial of the EICNHL group. J Clin Oncol. 2009;27(6):897–903.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Williams D, et al. Central nervous system involvement in anaplastic large cell lymphoma in childhood: results from a multicentre European and Japanese study. Pediatr Blood Cancer. 2013;60(10):E118–21.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Swerdlow SH, et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood. 2016;127(20):2375–90.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Burkhardt B, et al. Impact of cranial radiotherapy on central nervous system prophylaxis in children and adolescents with central nervous system-negative stage III or IV lymphoblastic lymphoma. J Clin Oncol. 2006;24(3):491–9.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Sandlund JT, et al. Effective treatment of advanced-stage childhood lymphoblastic lymphoma without prophylactic cranial irradiation: results of St Jude NHL13 study. Leukemia. 2009;23(6):1127–30.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017. CA Cancer J Clin. 2017;67(1):7–30.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Asselin BL, et al. Effectiveness of high-dose methotrexate in T-cell lymphoblastic leukemia and advanced-stage lymphoblastic lymphoma: a randomized study by the Children’s Oncology Group (POG 9404). Blood. 2011;118(4):874–83.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Termuhlen AM, et al. Disseminated lymphoblastic lymphoma in children and adolescents: results of the COG A5971 trial: a report from the Children’s Oncology Group. Br J Haematol. 2013;162(6):792–801.CrossRefGoogle Scholar
  17. 17.
    Griffin TC, et al. A study of rituximab and ifosfamide, carboplatin, and etoposide chemotherapy in children with recurrent/refractory B-cell (CD20+) non-Hodgkin lymphoma and mature B-cell acute lymphoblastic leukemia: a report from the Children’s Oncology Group. Pediatr Blood Cancer. 2009;52(2):177–81.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Jetsrisuparb A, et al. Rituximab combined with CHOP for successful treatment of aggressive recurrent, pediatric B-cell large cell non-Hodgkin’s lymphoma. J Pediatr Hematol Oncol. 2005;27(4):223–6.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Kewalramani T, et al. Rituximab and ICE as second-line therapy before autologous stem cell transplantation for relapsed or primary refractory diffuse large B-cell lymphoma. Blood. 2004;103(10):3684–8.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Schuster FR, et al. Immunotherapy with the trifunctional anti-CD20 x anti-CD3 antibody FBTA05 (Lymphomun) in paediatric high-risk patients with recurrent CD20-positive B cell malignancies. Br J Haematol. 2015;169(1):90–102.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Gross TG, et al. Hematopoietic stem cell transplantation for refractory or recurrent non-Hodgkin lymphoma in children and adolescents. Biol Blood Marrow Transplant. 2010;16(2):223–30.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Satwani P, et al. Sequential myeloablative autologous stem cell transplantation and reduced intensity allogeneic hematopoietic cell transplantation is safe and feasible in children, adolescents and young adults with poor-risk refractory or recurrent Hodgkin and non-Hodgkin lymphoma. Leukemia. 2015;29(2):448–55.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Berg SL, et al. Phase II study of nelarabine (compound 506U78) in children and young adults with refractory T-cell malignancies: a report from the Children’s Oncology Group. J Clin Oncol. 2005;23(15):3376–82.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Prokoph N, et al. Treatment options for paediatric anaplastic large cell lymphoma (ALCL): current standard and beyond. Cancers (Basel). 2018;10(4):E99.CrossRefGoogle Scholar
  25. 25.
    Broccoli A, et al. Italian real-life experience with brentuximab vedotin: results of a large observational study of 40 cases of relapsed/refractory systemic anaplastic large cell lymphoma. Haematologica. 2017;102(11):1931–5.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Gandolfi L, et al. Long-term responders after brentuximab vedotin: single-center experience on relapsed and refractory Hodgkin lymphoma and anaplastic large cell lymphoma patients. Oncologist. 2016;21(12):1436–41.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Pro B, et al. Five-year results of brentuximab vedotin in patients with relapsed or refractory systemic anaplastic large cell lymphoma. Blood. 2017;130(25):2709–17.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Sekimizu M, et al. Phase I clinical study of brentuximab vedotin (SGN-35) involving children with recurrent or refractory CD30-positive Hodgkin’s lymphoma or systemic anaplastic large cell lymphoma: rationale, design and methods of BV-HLALCL study: study protocol. BMC Cancer. 2018;18(1):122.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Goebeler ME, et al. Bispecific T-cell engager (BiTE) antibody construct blinatumomab for the treatment of patients with relapsed/refractory non-Hodgkin lymphoma: final results from a phase I study. J Clin Oncol. 2016;34(10):1104–11.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Viardot A, et al. Phase 2 study of the bispecific T-cell engager (BiTE) antibody blinatumomab in relapsed/refractory diffuse large B-cell lymphoma. Blood. 2016;127(11):1410–6.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Alasaad T, Barr R. Successful treatment of multiply relapsed lymphoma with rituximab as a single agent. Pediatr Blood Cancer. 2010;55(2):356–8.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Anoop P, et al. Outcome of childhood relapsed or refractory mature B-cell non-Hodgkin lymphoma and acute lymphoblastic leukemia. Leuk Lymphoma. 2012;53(10):1882–8.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Budde LE, et al. A phase I study of pulse high-dose vorinostat (V) plus rituximab (R), ifosfamide, carboplatin, and etoposide (ICE) in patients with relapsed lymphoma. Br J Haematol. 2013;161(2):183–91.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Cortelazzo S, et al. Randomized trial comparing R-CHOP versus high-dose sequential chemotherapy in high-risk patients with diffuse large B-cell lymphomas. J Clin Oncol. 2016;34(33):4015–22.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    McNeer JL, Bleyer A. Acute lymphoblastic leukemia and lymphoblastic lymphoma in adolescents and young adults. Pediatr Blood Cancer. 2018;65(6):e26989.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Fridrik MA, et al. Cardiotoxicity with rituximab, cyclophosphamide, non-pegylated liposomal doxorubicin, vincristine and prednisolone compared to rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisolone in frontline treatment of patients with diffuse large B-cell lymphoma: a randomised phase-III study from the Austrian Cancer Drug Therapy Working Group [Arbeitsgemeinschaft Medikamentose Tumortherapie AGMT] (NHL-14). Eur J Cancer. 2016;58:112–21.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Tao L, et al. Subsequent primary malignancies after diffuse large B-cell lymphoma in the modern treatment era. Br J Haematol. 2017;178(1):72–80.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Fleury I, et al. Rituximab and risk of second primary malignancies in patients with non-Hodgkin lymphoma: a systematic review and meta-analysis. Ann Oncol. 2016;27(3):390–7.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    De Sanctis V, et al. Second cancer incidence in primary mediastinal B-cell lymphoma treated with methotrexate with leucovorin rescue, doxorubicin, cyclophosphamide, vincristine, prednisone, and bleomycin regimen with or without rituximab and mediastinal radiotherapy: results from a monoinstitutional cohort analysis of long-term survivors. Hematol Oncol. 2017;35(4):554–60.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Cho SF, et al. Risk of second primary cancer in patients with B-cell non-Hodgkin lymphoma receiving rituximab-containing chemotherapy: a nationwide population-based study. Anticancer Res. 2015;35(3):1809–14.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Pavanello F, Zucca E, Ghielmini M. Rituximab: 13 open questions after 20 years of clinical use. Cancer Treat Rev. 2017;53:38–46.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Cairo MS, et al. Results of a randomized international study of high-risk central nervous system B non-Hodgkin lymphoma and B acute lymphoblastic leukemia in children and adolescents. Blood. 2007;109(7):2736–43.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Seidemann K, et al. Short-pulse B-non-Hodgkin lymphoma-type chemotherapy is efficacious treatment for pediatric anaplastic large cell lymphoma: a report of the Berlin-Frankfurt-Münster Group trial NHL-BFM 90. Blood. 2001;97(12):3699–706.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Bluhm EC, et al. Cause-specific mortality and second cancer incidence after non-Hodgkin lymphoma: a report from the Childhood Cancer Survivor Study. Blood. 2008;111(8):4014–21.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Ehrhardt MJ, et al. Late outcomes of adult survivors of childhood non-Hodgkin lymphoma: a report from the St. Jude Lifetime Cohort Study. Pediatr Blood Cancer. 2017;64(6):e26338.CrossRefGoogle Scholar
  46. 46.
    Ehrhardt MJ, et al. Neurocognitive, psychosocial, and quality-of-life outcomes in adult survivors of childhood non-Hodgkin lymphoma. Cancer. 2018;124(2):417–25.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Haddy TB, et al. Late effects in long-term survivors of high-grade non-Hodgkin’s lymphomas. J Clin Oncol. 1998;16(6):2070–9.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Inskip PD, Curtis RE. New malignancies following childhood cancer in the United States, 1973-2002. Int J Cancer. 2007;121(10):2233–40.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Leung W, et al. Second malignancy after treatment of childhood non-Hodgkin lymphoma. Cancer. 2001;92(7):1959–66.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Reulen RC, et al. Long-term cause-specific mortality among survivors of childhood cancer. JAMA. 2010;304(2):172–9.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Fidler MM, et al. Long term cause specific mortality among 34 489 five year survivors of childhood cancer in Great Britain: population based cohort study. BMJ. 2016;354:i4351.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Möller TR, et al. Decreasing late mortality among five-year survivors of cancer in childhood and adolescence: a population-based study in the Nordic countries. J Clin Oncol. 2001;19(13):3173–81.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Armstrong GT, et al. Late mortality among 5-year survivors of childhood cancer: a summary from the Childhood Cancer Survivor Study. J Clin Oncol. 2009;27(14):2328–38.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Bhakta N, et al. The cumulative burden of surviving childhood cancer: an initial report from the St Jude Lifetime Cohort Study (SJLIFE). Lancet. 2017;390(10112):2569–82.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Geenen MM, et al. Medical assessment of adverse health outcomes in long-term survivors of childhood cancer. JAMA. 2007;297(24):2705–15.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Chow EJ, et al. Individual prediction of heart failure among childhood cancer survivors. J Clin Oncol. 2015;33(5):394–402.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Chow EJ, et al. Prediction of ischemic heart disease and stroke in survivors of childhood cancer. J Clin Oncol. 2018;36(1):44–52.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Hoppe RT. Evolution of the techniques of radiation therapy in the management of lymphoma. Int J Clin Oncol. 2013;18(3):359–63.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Nysom K, et al. Degree of fatness after treatment of malignant lymphoma in childhood. Med Pediatr Oncol. 2003;40(4):239–43.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Moser EC, et al. Late non-neoplastic events in patients with aggressive non-Hodgkin’s lymphoma in four randomized European Organisation for Research and Treatment of Cancer trials. Clin Lymphoma Myeloma. 2005;6(2):122–30.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Patel DA, et al. Clinical manifestations of noncoronary atherosclerotic vascular disease after moderate dose irradiation. Cancer. 2006;106(3):718–25.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Friedman DL, et al. Subsequent neoplasms in 5-year survivors of childhood cancer: the Childhood Cancer Survivor Study. J Natl Cancer Inst. 2010;102(14):1083–95.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Meadows AT, et al. Second malignant neoplasms following childhood Hodgkin’s disease: treatment and splenectomy as risk factors. Med Pediatr Oncol. 1989;17(6):477–84.PubMedPubMedCentralGoogle Scholar
  64. 64.
    Armstrong GT, et al. Aging and risk of severe, disabling, life-threatening, and fatal events in the childhood cancer survivor study. J Clin Oncol. 2014;32(12):1218–27.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Teepen JC, et al. Long-term risk of subsequent malignant neoplasms after treatment of childhood cancer in the DCOG LATER study cohort: role of chemotherapy. J Clin Oncol. 2017;35(20):2288–98.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Reulen RC, et al. Long-term risks of subsequent primary neoplasms among survivors of childhood cancer. JAMA. 2011;305(22):2311–9.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Mertens AC, et al. Late mortality experience in five-year survivors of childhood and adolescent cancer: the Childhood Cancer Survivor Study. J Clin Oncol. 2001;19(13):3163–72.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Pole JD, et al. Subsequent malignant neoplasms in a population-based cohort of pediatric cancer patients: a focus on the first 5 years. Cancer Epidemiol Biomark Prev. 2015;24(10):1585–92.CrossRefGoogle Scholar
  69. 69.
    Maule M, et al. Risk of second malignant neoplasms after childhood leukemia and lymphoma: an international study. J Natl Cancer Inst. 2007;99(10):790–800.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Inskip PD, et al. Radiation-related new primary solid cancers in the childhood cancer survivor study: comparative radiation dose response and modification of treatment effects. Int J Radiat Oncol Biol Phys. 2016;94(4):800–7.PubMedCrossRefGoogle Scholar
  71. 71.
    Tward J, et al. Incidence, risk factors, and pathogenesis of second malignancies in patients with non-Hodgkin lymphoma. Leuk Lymphoma. 2007;48(8):1482–95.PubMedCrossRefGoogle Scholar
  72. 72.
    Cerhan JR, Slager SL. Familial predisposition and genetic risk factors for lymphoma. Blood. 2015;126(20):2265–73.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Jongmans MC, et al. Recognition of genetic predisposition in pediatric cancer patients: an easy-to-use selection tool. Eur J Med Genet. 2016;59(3):116–25.PubMedCrossRefGoogle Scholar
  74. 74.
    Howe R, et al. Secondary myelodysplastic syndrome and acute myelogenous leukemia are significant complications following autologous stem cell transplantation for lymphoma. Bone Marrow Transplant. 2003;32(3):317–24.PubMedCrossRefGoogle Scholar
  75. 75.
    Ruiz-Soto R, et al. Estimating late adverse events using competing risks after autologous stem-cell transplantation in aggressive non-Hodgkin lymphoma patients. Cancer. 2005;104(12):2735–42.PubMedCrossRefGoogle Scholar
  76. 76.
    Steffens M, et al. Endocrine and metabolic disorders in young adult survivors of childhood acute lymphoblastic leukaemia (ALL) or non-Hodgkin lymphoma (NHL). Clin Endocrinol. 2008;69(5):819–27.CrossRefGoogle Scholar
  77. 77.
    Green DM, et al. The cyclophosphamide equivalent dose as an approach for quantifying alkylating agent exposure: a report from the Childhood Cancer Survivor Study. Pediatr Blood Cancer. 2014;61(1):53–67.PubMedCrossRefGoogle Scholar
  78. 78.
    Ben Arush MW, et al. Male gonadal function in survivors of childhood Hodgkin and non-Hodgkin lymphoma. Pediatr Hematol Oncol. 2000;17(3):239–45.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Bokemeyer C, et al. Long-term gonadal toxicity after therapy for Hodgkin’s and non-Hodgkin’s lymphoma. Ann Hematol. 1994;68:105.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Pryzant RM, et al. Long-term reduction in sperm count after chemotherapy with and without radiation therapy for non-Hodgkin’s lymphomas. J Clin Oncol. 1993;11(2):239–47.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Romerius P, et al. High risk of azoospermia in men treated for childhood cancer. Int J Androl. 2011;34(1):69–76.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Kiserud CE, et al. Gonadal function in male patients after treatment for malignant lymphomas, with emphasis on chemotherapy. Br J Cancer. 2009;100(3):455–63.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Servitzoglou M, et al. Dose-effect relationship of alkylating agents on testicular function in male survivors of childhood lymphoma. Pediatr Hematol Oncol. 2015;32(8):613–23.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Patte C, et al. Results of the randomized international FAB/LMB96 trial for intermediate risk B-cell non-Hodgkin lymphoma in children and adolescents: it is possible to reduce treatment for the early responding patients. Blood. 2007;109(7):2773–80.PubMedPubMedCentralGoogle Scholar
  85. 85.
    Burns KC, et al. Fertility preservation options in pediatric and adolescent patients with cancer. Cancer. 2018;124(9):1867–76.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Gertosio C, et al. Fertility preservation in pediatric oncology patients: new perspectives. J Adolesc Young Adult Oncol. 2018;7(3):263–9.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Nightingale CL, et al. Health-related quality of life of young adult survivors of childhood cancer: a review of qualitative studies. J Adolesc Young Adult Oncol. 2011;1(3):124–32.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Meadows AT, et al. Declines in IQ scores and cognitive dysfunctions in children with acute lymphocytic leukaemia treated with cranial irradiation. Lancet. 1981;2(8254):1015–8.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Butler RW, Mulhern RK. Neurocognitive interventions for children and adolescents surviving cancer. J Pediatr Psychol. 2005;30(1):65–78.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Copeland DR, et al. Neuropsychological effects of childhood cancer treatment. J Child Neurol. 1988;3(1):53–62.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Kazak AE, Meadows AT. Families of young adolescents who have survived cancer: social-emotional adjustment, adaptability, and social support. J Pediatr Psychol. 1989;14(2):175–91.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Lancashire ER, et al. Educational attainment among adult survivors of childhood cancer in Great Britain: a population-based cohort study. J Natl Cancer Inst. 2010;102(4):254–70.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Mitby PA, et al. Utilization of special education services and educational attainment among long-term survivors of childhood cancer: a report from the Childhood Cancer Survivor Study. Cancer. 2003;97(4):1115–26.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Zeltzer LK, et al. Psychological status in childhood cancer survivors: a report from the Childhood Cancer Survivor Study. J Clin Oncol. 2009;27(14):2396–404.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Smith AW, et al. Unmet support service needs and health-related quality of life among adolescents and young adults with cancer: the AYA HOPE study. Front Oncol. 2013;3:75.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Smith AW, et al. Health-related quality of life of adolescent and young adult patients with cancer in the United States: the adolescent and young adult health outcomes and patient experience study. J Clin Oncol. 2013;31(17):2136–45.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Peterson CC, Drotar D. Family impact of neurodevelopmental late effects in survivors of pediatric cancer: review of research, clinical evidence, and future directions. Clin Child Psychol Psychiatry. 2006;11(3):349–66.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Nathan PC, et al. Adverse mental health outcomes in a population-based cohort of survivors of childhood cancer. Cancer. 2018;124(9):2045–57.PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Brinkman TM, et al. Prevalence and predictors of prescription psychoactive medication use in adult survivors of childhood cancer: a report from the Childhood Cancer Survivor Study. J Cancer Surviv. 2013;7:104–14.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Schultz KA, et al. Behavioral and social outcomes in adolescent survivors of childhood cancer: a report from the childhood cancer survivor study. J Clin Oncol. 2007;25(24):3649–56.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Zebrack BJ, et al. Psychological outcomes in long-term survivors of childhood leukemia, Hodgkin’s disease and non-Hodgkin’s lymphoma: a report from the childhood cancer survivor study. Pediatrics. 2002;110:42–52.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Stuber ML, et al. Prevalence and predictors of posttraumatic stress disorder in adult survivors of childhood cancer. Pediatrics. 2010;125:e1124–34.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Turner JK, Hutchinson A, Wilson C. Correlates of post-traumatic growth following childhood and adolescent cancer: a systematic review and meta-analysis. Psychooncology. 2018;27(4):1100–9.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Johannsdottir IMR, et al. Adverse health outcomes and associations with self-reported general health in childhood lymphoma survivors. J Adolesc Young Adult Oncol. 2017;6(3):470–6.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Johannsdottir IM, et al. Increased prescription rates of anxiolytics and hypnotics to survivors of cancer in childhood, adolescence, and young adulthood-a population-based study. Pediatr Blood Cancer. 2018;65(2).CrossRefGoogle Scholar
  106. 106.
    Pierson C, Waite E, Pyykkonen B. A meta-analysis of the neuropsychological effects of chemotherapy in the treatment of childhood cancer. Pediatr Blood Cancer. 2016;63(11):1998–2003.PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Arden-Close E, et al. Gender differences in self-reported late effects, quality of life and satisfaction with clinic in survivors of lymphoma. Psychooncology. 2011;20(11):1202–10.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Lu Q, et al. Pain in long-term adult survivors of childhood cancers and their siblings: a report from the Childhood Cancer Survivor Study. Pain. 2011;152(11):2616–24.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Hammersen F, et al. Sleep quality and health-related quality of life among long-term survivors of (non-) Hodgkin lymphoma in Germany. PLoS One. 2017;12(11):e0187673.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Smith K, et al. Alterations in self-perceptions among adolescent cancer survivors. Cancer Investig. 1991;9(5):581–8.CrossRefGoogle Scholar
  111. 111.
    Hall A, et al. Supportive care needs of hematological cancer survivors: a critical review of the literature. Crit Rev Oncol Hematol. 2013;88(1):102–16.PubMedCrossRefGoogle Scholar
  112. 112.
    Buchbinder D, Casillas J, Zeltzer L. Meeting the psychosocial needs of sibling survivors: a family systems approach. J Pediatr Oncol Nurs. 2011;28(3):123–36.PubMedCrossRefGoogle Scholar
  113. 113.
    Smith SK, et al. Is there a relationship between posttraumatic stress and growth after a lymphoma diagnosis? Psychooncology. 2014;23(3):315–21.PubMedCrossRefGoogle Scholar
  114. 114.
    Hewitt M, Weiner SL, Simone JC. Childhood cancer survivorship: improving care and quality of life. Washington, DC: The National Academies Press; 2003.Google Scholar
  115. 115.
    Hewitt M, Greenfield S, Stovall E, editors. From cancer patient to cancer survivor: lost in transition. Washington, DC: National Academies Press; 2005.Google Scholar
  116. 116.
    Mulder RL, et al. Recommendations for breast cancer surveillance for female survivors of childhood, adolescent, and young adult cancer given chest radiation: a report from the International Late Effects of Childhood Cancer Guideline Harmonization Group. Lancet Oncol. 2013;14(13):e621–9.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Clement SC, et al. Balancing the benefits and harms of thyroid cancer surveillance in survivors of childhood, adolescent and young adult cancer: recommendations from the International Late Effects of Childhood Cancer Guideline Harmonization Group in collaboration with the PanCareSurFup Consortium. Cancer Treat Rev. 2017;63:28–39.PubMedCrossRefGoogle Scholar
  118. 118.
    Armenian SH, et al. Recommendations for cardiomyopathy surveillance for survivors of childhood cancer: a report from the International Late Effects of Childhood Cancer Guideline Harmonization Group. Lancet Oncol. 2015;16(3):e123–36.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    van Dorp W, et al. Recommendations for premature ovarian insufficiency surveillance for female survivors of childhood, adolescent, and young adult cancer: a report from the International Late Effects of Childhood Cancer Guideline Harmonization Group in collaboration with the PanCareSurFup Consortium. J Clin Oncol. 2016;34(28):3440–50.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Skinner R, et al. Recommendations for gonadotoxicity surveillance in male childhood, adolescent, and young adult cancer survivors: a report from the International Late Effects of Childhood Cancer Guideline Harmonization Group in collaboration with the PanCareSurFup Consortium. Lancet Oncol. 2017;18(2):e75–90.PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Nathan PC, et al. Family physician preferences and knowledge gaps regarding the care of adolescent and young adult survivors of childhood cancer. J Cancer Surviv. 2013;7(3):275–82.PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Suh E, et al. General internists’ preferences and knowledge about the care of adult survivors of childhood cancer: a cross-sectional survey. Ann Intern Med. 2014;160(1):11–7.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Nathan PC, et al. Medical care in long-term survivors of childhood cancer: a report from the childhood cancer survivor study. J Clin Oncol. 2008;26(27):4401–9.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Patte C, et al. The Société Française d’Oncologie Pédiatrique LMB89 protocol: highly effective multiagent chemotherapy tailored to the tumor burden and initial response in 561 unselected children with B-cell lymphomas and L3 leukemia. Blood. 2001;97(11):3370–9.CrossRefGoogle Scholar
  125. 125.
    Reiter A, et al. Improved treatment results in childhood B-cell neoplasms with tailored intensification of therapy: a report of the Berlin-Frankfurt-Münster Group trial NHL-BFM 90. Blood. 1999;94(10):3294–306.Google Scholar
  126. 126.
    Woessmann W, et al. The impact of the methotrexate administration schedule and dose in the treatment of children and adolescents with B-cell neoplasms: a report of the BFM Group Study NHL-BFM95. Blood. 2005;105(3):948–58.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Link MP, et al. Treatment of children and young adults with early-stage non-Hodgkin’s lymphoma. N Engl J Med. 1997;337(18):1259–66.PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    Le Deley MC, et al. Prognostic factors in childhood anaplastic large cell lymphoma: results of a large European intergroup study. Blood. 2008;111(3):1560–6.PubMedCrossRefPubMedCentralGoogle Scholar
  129. 129.
    Amos Burke GA, et al. Localized non-Hodgkin’s lymphoma with B-cell histology: cure without cyclophosphamide? A report of the United Kingdom Children’s Cancer Study Group on studies NHL 8501 and NHL 9001 (1985-1996). Br J Haematol. 2003;121(4):586–91.PubMedCrossRefPubMedCentralGoogle Scholar
  130. 130.
    Laver JH, et al. Advanced-stage large-cell lymphoma in children and adolescents: results of a randomized trial incorporating intermediate-dose methotrexate and high-dose cytarabine in the maintenance phase of the APO regimen: a Pediatric Oncology Group phase III trial. J Clin Oncol. 2005;23(3):541–7.PubMedCrossRefPubMedCentralGoogle Scholar
  131. 131.
    Mora J, et al. Lymphoblastic lymphoma of childhood and the LSA2-L2 protocol: the 30-year experience at Memorial-Sloan-Kettering Cancer Center. Cancer. 2003;98(6):1283–91.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Patte C, et al. Results of the LMT81 protocol, a modified LSA2L2 protocol with high dose methotrexate, on 84 children with non-B-cell (lymphoblastic) lymphoma. Med Pediatr Oncol. 1992;20(2):105–13.PubMedCrossRefPubMedCentralGoogle Scholar
  133. 133.
    Pullen J, et al. Significance of commonly used prognostic factors differs for children with T cell acute lymphocytic leukemia (ALL), as compared to those with B-precursor ALL. A Pediatric Oncology Group (POG) study. Leukemia. 1999;13(11):1696–707.PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
    Abromowitch M, et al. Shortened intensified multi-agent chemotherapy and non-cross resistant maintenance therapy for advanced lymphoblastic lymphoma in children and adolescents: report from the Children’s Oncology Group. Br J Haematol. 2008;143(2):261–7.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Paul C. Nathan
    • 1
    • 2
    Email author
  • Karin P. S. Langenberg-Ververgaert
    • 3
  • Noelle Cullinan
    • 4
  1. 1.Division of Hematology/OncologyThe Hospital for Sick ChildrenTorontoCanada
  2. 2.Department of Pediatrics and Institute of Health Policy, Management & EvaluationUniversity of TorontoTorontoCanada
  3. 3.Division of Molecular Oncology and Translational ResearchPrincess Máxima Center for Pediatric OncologyUtrechtThe Netherlands
  4. 4.Division of Hematology/OncologyThe Hospital for Sick ChildrenTorontoCanada

Personalised recommendations