Extranodal NK-/T-Cell Lymphomas and EBV+ Lymphoproliferative Diseases of Childhood

  • Chinadol Wanitpongpun
  • Ritsuro SuzukiEmail author


Both extranodal NK-/T-cell lymphoma (ENKTL) and Epstein-Barr virus (EBV)-positive lymphoproliferative diseases (LPD) of childhood are rare forms of T-/NK-cell malignancy with EBV. They are relatively common in East Asia and require special considerations for the management and treatment. ENKTL cells express multidrug resistance-associated P-glycoprotein, which actively export various cytotoxic agents outside the lymphoma cells. Therefore, CHOP or other anthracycline-based chemotherapy is usually ineffective. Concurrent chemoradiotherapy is recommended for limited-stage ENKTL, and L-asparaginase containing regimen, such as SMILE, is recommended for advanced stage. The EBV-LPD of childhood is divided into several types, such as chronic active EBV-LPD, hypersensitivity to mosquito bite, hydroa vacciniforme-like lymphoma, and systemic EBV+ T-cell lymphoma of childhood. The details of each subtype including the clinical course are different, but it is consistent that hematopoietic stem cell transplantation is a key component of treatment. Recently, the efficacy of checkpoint inhibitors for ENKTL has been reported. Further immunological treatment including the EBV-specific cytotoxic T-cell therapy for EBV-LPD may further improve the outcome for these EBV-associated T-/NK-cell lymphoid neoplasms.


Extranodal NK-/T-cell lymphoma Epstein-Barr virus (EBV) Lymphoproliferative disease (LPD) Chronic active EBV-LPD (CAEBV-LPD) Severe mosquito bite allergy (SMBA) 


  1. 1.
    Chan JKC, Quintanilla-Martinez L, Ferry JA. Extranodal NK/T-cell lymphoma, nasal type. In: Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J, editors. WHO classification of tumours of haematopoietic and lymphoid tissues, Revised 4th edition. Lyon: International Agency for Research on Cancer; 2017. p. 368–71.Google Scholar
  2. 2.
    Quintanilla-Martinez L, Ko Y-H, Kimura H, Jaffe ES. EBV-positive T-cell and NK-cell lymphoproliferative diseases of childhood. In: Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J, editors. WHO classification of tumours of haematopoietic and lymphoid tissues, Revised 4th edition. Lyon: International Agency for Research on Cancer; 2017. p. 355–63.Google Scholar
  3. 3.
    Pillai V, Tallarico M, Bishop MR, Lim MS. Mature T- and NK-cell non-Hodgkin lymphoma in children and young adolescents. Br J Haematol. 2016;173:573–81.CrossRefGoogle Scholar
  4. 4.
    Suzuki R, Takeuchi K, Ohshima K, Nakamura S. Extranodal NK/T-cell lymphoma: diagnosis and treatment cues. Hematol Oncol. 2008;26:66–72.CrossRefGoogle Scholar
  5. 5.
    Suzuki R. Pathogenesis and treatment of extranodal natural killer/T-cell lymphoma. Semin Hematol. 2014;51:42–51.CrossRefGoogle Scholar
  6. 6.
    Kawa K. Epstein-Barr virus-associated diseases in humans. Int J Hematol. 2000;71:108–17.PubMedGoogle Scholar
  7. 7.
    Kawa K. Diagnosis and treatment of Epstein-Barr virus-associated natural killer cell lymphoproliferative disease. Int J Hematol. 2003;78:24–31.CrossRefGoogle Scholar
  8. 8.
    Egashira M, Kawamata N, Sugimoto K, Kaneko T, Oshimi K. P-glycoprotein expression on normal and abnormally expanded natural killer cells and inhibition of P-glycoprotein function by cyclosporin A and its analogue, PSC833. Blood. 1999;93:599–606.PubMedGoogle Scholar
  9. 9.
    Yamaguchi M, Kita K, Miwa H, Nishii K, Oka K, Ohno T, Shirakawa S, Fukumoto M. Frequent expression of P-glycoprotein/MDR1 by nasal T-cell lymphoma cells. Cancer. 1995;76:2351–6.CrossRefGoogle Scholar
  10. 10.
    Lee J, Suh C, Park YH, et al. Extranodal natural killer T-cell lymphoma, nasal-type: a prognostic model from a retrospective multicenter study. J Clin Oncol. 2006;24:612–8.CrossRefGoogle Scholar
  11. 11.
    Suzuki R, Suzumiya J, Yamaguchi M, et al. Prognostic factors for mature natural killer (NK) cell neoplasms: aggressive NK cell leukemia and extranodal NK cell lymphoma, nasal type. Ann Oncol. 2010;21:1032–40.CrossRefGoogle Scholar
  12. 12.
    Au W, Weisenburger DD, Intragumtornchai T, Nakamura S, Kim W-S, Sng I, Vose J, Armitage JO, Liang R, International Peripheral T-Cell Lymphoma Project. Clinical differences between nasal and extranasal natural killer/T-cell lymphoma: a study of 136 cases from the International Peripheral T-Cell Lymphoma Project. Blood. 2009;113:3931–7.CrossRefGoogle Scholar
  13. 13.
    Oshimi K. Progress in understanding and managing natural killer-cell malignancies. Br J Haematol. 2007;139:532–44.CrossRefGoogle Scholar
  14. 14.
    Liang R. Advances in the management and monitoring of extranodal NK/T-cell lymphoma, nasal type. Br J Haematol. 2009;147:13–21.CrossRefGoogle Scholar
  15. 15.
    Sukpanichnant S, Sonakul D, Piankijagum A, Wanachiwanawin W, Veerakul G, Mahasandana C, Tanphaichitr VS, Suvatte V. Malignant lymphoma in Thailand: changes in the frequency of malignant lymphoma determined from a histopathologic and immunophenotypic analysis of 425 cases at Siriraj Hospital. Cancer. 1998;83:1197–204.CrossRefGoogle Scholar
  16. 16.
    Ko YH, Kim CW, Park CS, Jang HK, Lee SS, Kim SH, Ree HJ, Lee JD, Kim SW, Huh JR. REAL classification of malignant lymphomas in the Republic of Korea: incidence of recently recognized entities and changes in clinicopathologic features. Hematolymphoreticular Study Group of the Korean Society of Pathologists. Revised European-American lymphoma. Cancer. 1998;83:806–12.CrossRefGoogle Scholar
  17. 17.
    Sun J, Yang Q, Lu Z, et al. Distribution of lymphoid neoplasms in China: analysis of 4,638 cases according to the World Health Organization classification. Am J Clin Pathol. 2012;138:429–34.CrossRefGoogle Scholar
  18. 18.
    Avilés A, Díaz NR, Neri N, Cleto S, Talavera A. Angiocentric nasal T/natural killer cell lymphoma: a single centre study of prognostic factors in 108 patients. Clin Lab Haematol. 2000;22:215–20.CrossRefGoogle Scholar
  19. 19.
    Barrionuevo C, Zaharia M, Martinez MT, et al. Extranodal NK/T-cell lymphoma, nasal type: study of clinicopathologic and prognosis factors in a series of 78 cases from Peru. Appl Immunohistochem Mol Morphol. 2007;15:38–44.CrossRefGoogle Scholar
  20. 20.
    Gualco G, Domeny-Duarte P, Chioato L, Barber G, Natkunam Y, Bacchi CE. Clinicopathologic and molecular features of 122 Brazilian cases of nodal and extranodal NK/T-cell lymphoma, nasal type, with EBV subtyping analysis. Am J Surg Pathol. 2011;35:1195–203.CrossRefGoogle Scholar
  21. 21.
    Ng SB, Lai KW, Murugaya S, Lee KM, Loong SLE, Fook-Chong S, Tao M, Sng I. Nasal-type extranodal natural killer/T-cell lymphomas: a clinicopathologic and genotypic study of 42 cases in Singapore. Mod Pathol. 2004;17:1097–107.CrossRefGoogle Scholar
  22. 22.
    Pongpruttipan T, Sukpanichnant S, Assanasen T, et al. Extranodal NK/T-cell lymphoma, nasal type, includes cases of natural killer cell and αβ, γδ, and αβ/γδ T-cell origin: a comprehensive clinicopathologic and phenotypic study. Am J Surg Pathol. 2012;36:481–99.CrossRefGoogle Scholar
  23. 23.
    Ahn HK, Suh C, Chuang SS, et al. Extranodal natural killer/T cell lymphoma from skin or soft tissue: suggestion of treatment from multinational retrospective analysis. Ann Oncol. 2012;23(10):2703–7.CrossRefGoogle Scholar
  24. 24.
    Kim SJ, Jung HA, Chuang SS, et al. Extranodal natural killer/T-cell lymphoma involving the gastrointestinal tract: analysis of clinical features and outcomes from the Asia Lymphoma Study Group. J Hematol Oncol. 2013;6:86.CrossRefGoogle Scholar
  25. 25.
    Takeuchi K, Yokoyama M, Ishizawa S, et al. Lymphomatoid gastropathy: a distinct clinicopathologic entity of self-limited pseudomalignant NK-cell proliferation. Blood. 2010;116:5631–7.CrossRefGoogle Scholar
  26. 26.
    Mansoor A, Pittaluga S, Beck PL, Wilson WH, Ferry JA, Jaffe ES. NK-cell enteropathy: a benign NK-cell lymphoproliferative disease mimicking intestinal lymphoma: clinicopathologic features and follow-up in a unique case series. Blood. 2011;117:1447–52.CrossRefGoogle Scholar
  27. 27.
    Cheson BD, Fisher RI, Barrington SF, et al. Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: the Lugano classification. J Clin Oncol. 2014;32:3059–68.CrossRefGoogle Scholar
  28. 28.
    Weiler-Sagie M, Bushelev O, Epelbaum R, et al. 18F-FDG avidity in lymphoma readdressed: a study of 766 patients. J Nucl Med. 2010;51:25–30.CrossRefGoogle Scholar
  29. 29.
    Chan WK, Au WY, Wong CY, et al. Metabolic activity measured by F-18 FDG PET in natural killer-cell lymphoma compared to aggressive B- and T-cell lymphomas. Clin Nucl Med. 2010;35(8):571–5.CrossRefGoogle Scholar
  30. 30.
    Fujiwara H, Maeda Y, Nawa Y, et al. The utility of positron emission tomography/computed tomography in the staging of extranodal natural killer/T-cell lymphoma. Eur J Haematol. 2011;87:123–9.CrossRefGoogle Scholar
  31. 31.
    Rosolen A, Perkins SL, Pinkerton CR, Guillerman RP, Sandlund JT, Patte C, Reiter A, Cairo MS. Revised international pediatric non-Hodgkin lymphoma staging system. J Clin Oncol. 2015;33:2112–8.CrossRefGoogle Scholar
  32. 32.
    Murphy SB. Classification, staging and end results of treatment of childhood non-Hodgkin’s lymphomas: dissimilarities from lymphomas in adults. Semin Oncol. 1980;7:332–9.PubMedGoogle Scholar
  33. 33.
    Lister TA, Crowther D, Sutcliffe SB, et al. Report of a committee convened to discuss the evaluation and staging of patients with Hodgkin’s disease: Cotswolds meeting. J Clin Oncol. 1989;7:1630–6.CrossRefGoogle Scholar
  34. 34.
    Chim C-S, Ma S-Y, Au W-Y, Choy C, Lie AKW, Liang R, Yau C-C, Kwong Y-L. Primary nasal natural killer cell lymphoma: long-term treatment outcome and relationship with the International Prognostic Index. Blood. 2004;103:216–21.CrossRefGoogle Scholar
  35. 35.
    Kim TM, Park YH, Lee S-Y, et al. Local tumor invasiveness is more predictive of survival than International Prognostic Index in stage IE/IIE extranodal NK/T-cell lymphoma, nasal type. Blood. 2005;106:3785–90.CrossRefGoogle Scholar
  36. 36.
    Au W-Y, Pang A, Choy C, Chim C-S, Kwong Y-L. Quantification of circulating Epstein-Barr virus (EBV) DNA in the diagnosis and monitoring of natural killer cell and EBV-positive lymphomas in immunocompetent patients. Blood. 2004;104:243–9.CrossRefGoogle Scholar
  37. 37.
    Suzuki R, Yamaguchi M, Izutsu K, et al. Prospective measurement of Epstein-Barr virus-DNA in plasma and peripheral blood mononuclear cells of extranodal NK/T-cell lymphoma, nasal type. Blood. 2011;118:6018–22.CrossRefGoogle Scholar
  38. 38.
    Yamaguchi M, Takata K, Yoshino T, et al. Prognostic biomarkers in patients with localized natural killer/T-cell lymphoma treated with concurrent chemoradiotherapy. Cancer Sci. 2014;105:1435–41.CrossRefGoogle Scholar
  39. 39.
    Yamaguchi M, Suzuki R, Oguchi M, et al. Treatments and outcomes of patients with extranodal natural killer/T-cell lymphoma diagnosed between 2000 and 2013: a cooperative study in Japan. J Clin Oncol. 2017;35:32–9.CrossRefGoogle Scholar
  40. 40.
    Kim SJ, Yoon DH, Jaccard A, et al. A prognostic index for natural killer cell lymphoma after non-anthracycline-based treatment: a multicentre, retrospective analysis. Lancet Oncol. 2016;17:389–400.CrossRefGoogle Scholar
  41. 41.
    Li Y-X, Yao B, Jin J, et al. Radiotherapy as primary treatment for stage IE and IIE nasal natural killer/T-cell lymphoma. J Clin Oncol. 2006;24:181–9.CrossRefGoogle Scholar
  42. 42.
    Yamaguchi M, Tobinai K, Oguchi M, et al. Phase I/II study of concurrent chemoradiotherapy for localized nasal natural killer/T-cell lymphoma: Japan Clinical Oncology Group Study JCOG0211. J Clin Oncol. 2009;27:5594–600.CrossRefGoogle Scholar
  43. 43.
    Kim SJ, Kim K, Kim BS, et al. Phase II trial of concurrent radiation and weekly cisplatin followed by VIPD chemotherapy in newly diagnosed, stage IE to IIE, nasal, extranodal NK/T-Cell Lymphoma: Consortium for Improving Survival of Lymphoma study. J Clin Oncol. 2009;27:6027–32.CrossRefGoogle Scholar
  44. 44.
    Kwong Y-L, Kim WS, Lim ST, Kim SJ, Tang T, Tse E, Leung AYH, Chim C-S. SMILE for natural killer/T-cell lymphoma: analysis of safety and efficacy from the Asia Lymphoma Study Group. Blood. 2012;120:2973–80.CrossRefGoogle Scholar
  45. 45.
    Wang L, Wang Z-H, Chen X-Q, Wang K-F, Huang H-Q, Xia Z-J. First-line combination of GELOX followed by radiation therapy for patients with stage IE/IIE ENKTL: an updated analysis with long-term follow-up. Oncol Lett. 2015;10:1036–40.CrossRefGoogle Scholar
  46. 46.
    Ferreri AJM. Risk of CNS dissemination in extranodal lymphomas. Lancet Oncol. 2014;15:e159–69.CrossRefGoogle Scholar
  47. 47.
    Yamaguchi M, Kwong Y-L, Kim WS, et al. Phase II study of SMILE chemotherapy for newly diagnosed stage IV, relapsed, or refractory extranodal natural killer (NK)/T-cell lymphoma, nasal type: the NK-Cell Tumor Study Group study. J Clin Oncol. 2011;29:4410–6.CrossRefGoogle Scholar
  48. 48.
    Chan A, Tang T, Ng T, Shih V, Tay K, Tao M, Quek R, Lim ST. To SMILE or not: supportive care matters. J Clin Oncol. 2012;30:1015–6; author reply 1016-1017CrossRefGoogle Scholar
  49. 49.
    Kim SJ, Park S, Kang ES, et al. Induction treatment with SMILE and consolidation with autologous stem cell transplantation for newly diagnosed stage IV extranodal natural killer/T-cell lymphoma patients. Ann Hematol. 2015;94:71–8.CrossRefGoogle Scholar
  50. 50.
    Suzuki R. Treatment of advanced extranodal NK/T-cell lymphoma, nasal-type and aggressive NK-cell leukemia. Int J Hematol. 2010;92:697–701.CrossRefGoogle Scholar
  51. 51.
    Qi S, Yahalom J, Hsu M, Chelius M, Lunning M, Moskowitz A, Horwitz S. Encouraging experience in the treatment of nasal type extra-nodal NK/T-cell lymphoma in a non-Asian population. Leuk Lymphoma. 2016;57:2575–83.CrossRefGoogle Scholar
  52. 52.
    Suzuki R. NK/T cell lymphoma: updates in therapy. Curr Hematol Malig Rep. 2018;13:7–12.CrossRefGoogle Scholar
  53. 53.
    Yamaguchi M, Suzuki R, Oguchi M. Advances in the treatment of extranodal NK/T-cell lymphoma, nasal type. Blood. 2018;131:2528.CrossRefGoogle Scholar
  54. 54.
    Kharfan-Dabaja MA, Kumar A, Ayala E, et al. Clinical practice recommendations on indication and timing of hematopoietic cell transplantation in mature T-cell and NK/T-cell lymphomas: an international collaborative effort on behalf of the Guidelines Committee of the American Society for Blood and Marrow Transplantation. Biol Blood Marrow Transplant. 2017;23:1826–38.CrossRefGoogle Scholar
  55. 55.
    Kwong Y-L. Hematopoietic stem cell transplantation in natural killer cell lymphoma and leukemia. Int J Hematol. 2010;92:702–7.CrossRefGoogle Scholar
  56. 56.
    Buchbinder EI, Desai A. CTLA-4 and PD-1 pathways: similarities, differences, and implications of their inhibition. Am J Clin Oncol. 2016;39:98–106.CrossRefGoogle Scholar
  57. 57.
    Green MR, Rodig S, Juszczynski P, et al. Constitutive AP-1 activity and EBV infection induce PD-L1 in Hodgkin lymphomas and posttransplant lymphoproliferative disorders: implications for targeted therapy. Clin Cancer Res. 2012;18:1611–8.CrossRefGoogle Scholar
  58. 58.
    Chen BJ, Chapuy B, Ouyang J, et al. PD-L1 expression is characteristic of a subset of aggressive B-cell lymphomas and virus-associated malignancies. Clin Cancer Res. 2013;19:3462–73.CrossRefGoogle Scholar
  59. 59.
    Kwong YL, Chan TSY, Tan D, et al. PD1 blockade with pembrolizumab is highly effective in relapsed or refractory NK/T-cell lymphoma failing L-asparaginase. Blood. 2017;129:2437–42.CrossRefGoogle Scholar
  60. 60.
    Chan TSY, Li J, Loong F, et al. PD1 blockade with low-dose nivolumab in NK/T cell lymphoma failing L-asparaginase: efficacy and safety. Ann Hematol. 2018;97:193–6.CrossRefGoogle Scholar
  61. 61.
    Li X, Cheng Y, Zhang M, et al. Activity of pembrolizumab in relapsed/refractory NK/T-cell lymphoma. J Hematol Oncol. 2018;11:15.CrossRefGoogle Scholar
  62. 62.
    Lokhorst HM, Plesner T, Laubach JP, et al. Targeting CD38 with daratumumab monotherapy in multiple myeloma. N Engl J Med. 2015;373:1207–19.CrossRefGoogle Scholar
  63. 63.
    Hari P, Raj RV, Olteanu H. Targeting CD38 in refractory extranodal natural killer cell-T-cell lymphoma. N Engl J Med. 2016;375:1501–2.CrossRefGoogle Scholar
  64. 64.
    Gulley ML. Molecular diagnosis of Epstein-Barr virus-related diseases. J Mol Diagn. 2001;3:1–10.CrossRefGoogle Scholar
  65. 65.
    Kimura H, Hoshino Y, Kanegane H, Tsuge I, Okamura T, Kawa K, Morishima T. Clinical and virologic characteristics of chronic active Epstein-Barr virus infection. Blood. 2001;98:280–6.CrossRefGoogle Scholar
  66. 66.
    Okano M, Kawa K, Kimura H, et al. Proposed guidelines for diagnosing chronic active Epstein-Barr virus infection. Am J Hematol. 2005;80:64–9.CrossRefGoogle Scholar
  67. 67.
    Kimura H, Ito Y, Kawabe S, et al. EBV-associated T/NK-cell lymphoproliferative diseases in nonimmunocompromised hosts: prospective analysis of 108 cases. Blood. 2012;119:673–86.CrossRefGoogle Scholar
  68. 68.
    Ishihara S, Okada S, Wakiguchi H, Kurashige T, Hirai K, Kawa-Ha K. Clonal lymphoproliferation following chronic active Epstein-Barr virus infection and hypersensitivity to mosquito bites. Am J Hematol. 1997;54:276–81.CrossRefGoogle Scholar
  69. 69.
    Ruiz-Maldonado R, Parrilla F, Orozco-Covarrubias M, et al. Edematous, scarring vasculitic panniculitis: a new multisystemic disease with malignant potential. J Am Acad Dermatol. 1995;32:37–44.CrossRefGoogle Scholar
  70. 70.
    Iwatsuki K, Xu Z, Takata M, et al. The association of latent Epstein-Barr virus infection with hydroa vacciniforme. Br J Dermatol. 1999;140:715–21.CrossRefGoogle Scholar
  71. 71.
    Quintanilla-Martinez L, Kumar S, Fend F, et al. Fulminant EBV(+) T-cell lymphoproliferative disorder following acute/chronic EBV infection: a distinct clinicopathologic syndrome. Blood. 2000;96:443–51.PubMedGoogle Scholar
  72. 72.
    Kawa K, Sawada A, Sato M, et al. Excellent outcome of allogeneic hematopoietic SCT with reduced-intensity conditioning for the treatment of chronic active EBV infection. Bone Marrow Transplant. 2011;46:77–83.CrossRefGoogle Scholar
  73. 73.
    Papadopoulos EB, Ladanyi M, Emanuel D, Mackinnon S, Boulad F, Carabasi MH, Castro-Malaspina H, Childs BH, Gillio AP, Small TN. Infusions of donor leukocytes to treat Epstein-Barr virus-associated lymphoproliferative disorders after allogeneic bone marrow transplantation. N Engl J Med. 1994;330:1185–91.CrossRefGoogle Scholar
  74. 74.
    Leen AM, Myers GD, Sili U, et al. Monoculture-derived T lymphocytes specific for multiple viruses expand and produce clinically relevant effects in immunocompromised individuals. Nat Med. 2006;12:1160–6.CrossRefGoogle Scholar
  75. 75.
    Heslop HE, Slobod KS, Pule MA, et al. Long-term outcome of EBV-specific T-cell infusions to prevent or treat EBV-related lymphoproliferative disease in transplant recipients. Blood. 2010;115:925–35.CrossRefGoogle Scholar
  76. 76.
    Barth MJ, Chu Y, Hanley PJ, Cairo MS. Immunotherapeutic approaches for the treatment of childhood, adolescent and young adult non-Hodgkin lymphoma. Br J Haematol. 2016;173:597–616.CrossRefGoogle Scholar
  77. 77.
    Cho S-G, Kim N, Sohn H-J, et al. Long-term outcome of extranodal NK/T cell lymphoma patients treated with postremission therapy using EBV LMP1 and LMP2a-specific CTLs. Mol Ther J Am Soc Gene Ther. 2015;23:1401–9.CrossRefGoogle Scholar
  78. 78.
    Bollard CM, Gottschalk S, Torrano V, et al. Sustained complete responses in patients with lymphoma receiving autologous cytotoxic T lymphocytes targeting Epstein-Barr virus latent membrane proteins. J Clin Oncol. 2014;32:798–808.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Oncology and Hematology, Innovative Cancer CenterShimane UniversityIzumoJapan
  2. 2.Hematology Unit, Department of Internal MedicineSrinagarind Hospital, Khon Kaen UniversityKhon KaenThailand

Personalised recommendations