Advertisement

Primary Mediastinal and Gray Zone Lymphomas

  • Lisa Giulino-RothEmail author
  • Kieron Dunleavy
Chapter

Abstract

Primary mediastinal B-cell lymphoma (PMBCL) is now recognized as a distinct clinicopathologic entity that is principally diagnosed in adolescents and young adults (AYAs). Its clinical, morphological, and biological characteristics overlap significantly with those of nodular sclerosing Hodgkin lymphoma (NSHL). Recently, the common biology of these two entities has been highlighted across several studies and mediastinal gray zone lymphoma (MGZL), with histologic and molecular features intermediate between PMBCL and NSHL being recognized as a unique molecular entity. There is lack of consensus regarding the optimal therapeutic strategy for newly diagnosed AYA patients with PMBCL, but highly curative strategies that obviate the need for mediastinal radiation are favored by most. Recent refined understanding of the biology of PMBCL has paved the way for investigating novel approaches such as targeting CD30, immune checkpoint inhibition, and adoptive T-cell therapy.

Keywords

Primary mediastinal PMBCL AYA “Gray zone” lymphoma DA-EPOCH-R Immune checkpoints CAR T-cells Thymic B-cell JAK-STAT PD1 

References

  1. 1.
    Rosenwald A, Wright G, Leroy K, et al. Molecular diagnosis of primary mediastinal B cell lymphoma identifies a clinically favorable subgroup of diffuse large B cell lymphoma related to Hodgkin lymphoma. J Exp Med. 2003;198(6):851–62.CrossRefPubMedGoogle Scholar
  2. 2.
    Gunawardana J, Chan FC, Telenius A, et al. Recurrent somatic mutations of PTPN1 in primary mediastinal B cell lymphoma and Hodgkin lymphoma. Nat Genet. 2014;46(4):329–35.CrossRefPubMedGoogle Scholar
  3. 3.
    Eberle FC, Salaverria I, Steidl C, et al. Gray zone lymphoma: chromosomal aberrations with immunophenotypic and clinical correlations. Mod Pathol. 2011;24(12):1586–97.CrossRefPubMedGoogle Scholar
  4. 4.
    Dunleavy K, Gross TG. Management of aggressive B cell NHLs in the AYA population: an adult versus pediatric perspective. Blood. 2018;132(4):369–75.CrossRefPubMedGoogle Scholar
  5. 5.
    Swerdlow SH, Campo E, Harris NL, et al. WHO classification of tumours of haematopoietic and lymphoid tissues. IARC: Lyon; 2008.Google Scholar
  6. 6.
    Grant C, Dunleavy K, Eberle FC, Pittaluga S, Wilson WH, Jaffe ES. Primary mediastinal large B-cell lymphoma, classic Hodgkin lymphoma presenting in the mediastinum, and mediastinal gray zone lymphoma: what is the oncologist to do? Curr Hematol Malig Rep. 2011;6(3):157–63.CrossRefPubMedGoogle Scholar
  7. 7.
    Steidl C, Gascoyne RD. The molecular pathogenesis of primary mediastinal large B-cell lymphoma. Blood. 2011;118(10):2659–69.CrossRefPubMedGoogle Scholar
  8. 8.
    Dunleavy K, Steidl C. Emerging biological insights and novel treatment strategies in primary mediastinal large B-cell lymphoma. Semin Hematol. 2015;52(2):119–25.CrossRefPubMedGoogle Scholar
  9. 9.
    Dubois S, Viailly PJ, Mareschal S, et al. Next-generation sequencing in diffuse large B-cell lymphoma highlights molecular divergence and therapeutic opportunities: a LYSA study. Clin Cancer Res. 2016;22(12):2919–28.CrossRefPubMedGoogle Scholar
  10. 10.
    Guiter C, Dusanter-Fourt I, Copie-Bergman C, et al. Constitutive STAT6 activation in primary mediastinal large B-cell lymphoma. Blood. 2004;104(2):543–9.CrossRefPubMedGoogle Scholar
  11. 11.
    Rui L, Emre NC, Kruhlak MJ, et al. Cooperative epigenetic modulation by cancer amplicon genes. Cancer Cell. 2010;18(6):590–605.CrossRefPubMedGoogle Scholar
  12. 12.
    Melzner I, Bucur AJ, Bruderlein S, et al. Biallelic mutation of SOCS-1 impairs JAK2 degradation and sustains phospho-JAK2 action in the MedB-1 mediastinal lymphoma line. Blood. 2005;105(6):2535–42.CrossRefPubMedGoogle Scholar
  13. 13.
    Mottok A, Renne C, Willenbrock K, Hansmann ML, Brauninger A. Somatic hypermutation of SOCS1 in lymphocyte-predominant Hodgkin lymphoma is accompanied by high JAK2 expression and activation of STAT6. Blood. 2007;110(9):3387–90.CrossRefPubMedGoogle Scholar
  14. 14.
    Weniger MA, Melzner I, Menz CK, et al. Mutations of the tumor suppressor gene SOCS-1 in classical Hodgkin lymphoma are frequent and associated with nuclear phospho-STAT5 accumulation. Oncogene. 2006;25(18):2679–84.CrossRefPubMedGoogle Scholar
  15. 15.
    Ritz O, Guiter C, Castellano F, et al. Recurrent mutations of the STAT6 DNA binding domain in primary mediastinal B-cell lymphoma. Blood. 2009;114(6):1236–42.CrossRefPubMedGoogle Scholar
  16. 16.
    Savage KJ, Monti S, Kutok JL, et al. The molecular signature of mediastinal large B-cell lymphoma differs from that of other diffuse large B-cell lymphomas and shares features with classical Hodgkin lymphoma. Blood. 2003;102(12):3871–9.CrossRefPubMedGoogle Scholar
  17. 17.
    Fowler NH, Cheah CY, Gascoyne RD, et al. Role of the tumor microenvironment in mature B-cell lymphoid malignancies. Haematologica. 2016;101(5):531–40.CrossRefPubMedGoogle Scholar
  18. 18.
    Rigaud G, Moore PS, Taruscio D, et al. Alteration of chromosome arm 6p is characteristic of primary mediastinal B-cell lymphoma, as identified by genome-wide allelotyping. Genes Chromosomes Cancer. 2001;31(2):191–5.CrossRefPubMedGoogle Scholar
  19. 19.
    Roberts RA, Wright G, Rosenwald AR, et al. Loss of major histocompatibility class II gene and protein expression in primary mediastinal large B-cell lymphoma is highly coordinated and related to poor patient survival. Blood. 2006;108(1):311–8.CrossRefPubMedGoogle Scholar
  20. 20.
    Green MR, Monti S, Rodig SJ, et al. Integrative analysis reveals selective 9p24.1 amplification, increased PD-1 ligand expression, and further induction via JAK2 in nodular sclerosing Hodgkin lymphoma and primary mediastinal large B-cell lymphoma. Blood. 2010;116(17):3268–77.CrossRefPubMedGoogle Scholar
  21. 21.
    Twa DDW, Chan FC, Ben-Neriah S, et al. Genomic Rearrangements Involving Programmed Death Ligands Are Recurrent In Primary Mediastinal Large B-Cell Lymphoma. Blood. 2013;122(21):635.Google Scholar
  22. 22.
    Steidl C, Shah SP, Woolcock BW, et al. MHC class II transactivator CIITA is a recurrent gene fusion partner in lymphoid cancers. Nature. 2011;471(7338):377–81.CrossRefPubMedGoogle Scholar
  23. 23.
    Seidemann K, Tiemann M, Lauterbach I, et al. Primary mediastinal large B-cell lymphoma with sclerosis in pediatric and adolescent patients: treatment and results from three therapeutic studies of the Berlin-Frankfurt-Munster Group. J Clin Oncol. 2003;21(9):1782–9.CrossRefPubMedGoogle Scholar
  24. 24.
    Patte C, Auperin A, Gerrard M, et al. Results of the randomized international FAB/LMB96 trial for intermediate risk B-cell non-Hodgkin lymphoma in children and adolescents: it is possible to reduce treatment for the early responding patients. Blood. 2007;109(7):2773–80.PubMedCentralPubMedGoogle Scholar
  25. 25.
    Cairo MS, Gerrard M, Sposto R, et al. Results of a randomized international study of high-risk central nervous system B non-Hodgkin lymphoma and B acute lymphoblastic leukemia in children and adolescents. Blood. 2007;109(7):2736–43.PubMedCentralPubMedGoogle Scholar
  26. 26.
    Gerrard M, Waxman IM, Sposto R, et al. Outcome and pathologic classification of children and adolescents with mediastinal large B-cell lymphoma treated with FAB/LMB96 mature B-NHL therapy. Blood. 2013;121(2):278–85.CrossRefPubMedGoogle Scholar
  27. 27.
    Pillon M, Di Tullio MT, Garaventa A, et al. Long-term results of the first Italian Association of Pediatric Hematology and Oncology protocol for the treatment of pediatric B-cell non-Hodgkin lymphoma (AIEOP LNH92). Cancer. 2004;101(2):385–94.CrossRefPubMedGoogle Scholar
  28. 28.
    Woessmann W, Seidemann K, Mann G, et al. The impact of the methotrexate administration schedule and dose in the treatment of children and adolescents with B-cell neoplasms: a report of the BFM Group Study NHL-BFM95. Blood. 2005;105(3):948–58.CrossRefGoogle Scholar
  29. 29.
    Reiter A, Schrappe M, Parwaresch R, et al. Non-Hodgkin’s lymphomas of childhood and adolescence: results of a treatment stratified for biologic subtypes and stage--a report of the Berlin-Frankfurt-Munster Group. J Clin Oncol. 1995;13(2):359–72.CrossRefGoogle Scholar
  30. 30.
    Reiter A, Schrappe M, Tiemann M, et al. Improved treatment results in childhood B-cell neoplasms with tailored intensification of therapy: a report of the Berlin-Frankfurt-Munster Group Trial NHL-BFM 90. Blood. 1999;94(10):3294–306.Google Scholar
  31. 31.
    Patte C, Auperin A, Michon J, et al. The Societe Francaise d’Oncologie Pediatrique LMB89 protocol: highly effective multiagent chemotherapy tailored to the tumor burden and initial response in 561 unselected children with B-cell lymphomas and L3 leukemia. Blood. 2001;97(11):3370–9.CrossRefPubMedGoogle Scholar
  32. 32.
    Patte C, Auperin A, Reiter A. Primary mediastinal large B-cell lymphoma in children and adolescents: Data of the European and American Groups, for SFOP LMB, FAB LMB96, BFM, and AEIO study groups. Ann Oncol. 2005;16Google Scholar
  33. 33.
    Avigdor A, Sirotkin T, Kedmi M, et al. The impact of R-VACOP-B and interim FDG-PET/CT on outcome in primary mediastinal large B cell lymphoma. Ann Hematol. 2014;93(8):1297–304.CrossRefPubMedGoogle Scholar
  34. 34.
    Gleeson M, Hawkes EA, Cunningham D, et al. Rituximab, cyclophosphamide, doxorubicin, vincristine and prednisolone (R-CHOP) in the management of primary mediastinal B-cell lymphoma: a subgroup analysis of the UK NCRI R-CHOP 14 versus 21 trial. Br J Haematol. 2016;175(4):668–72.CrossRefPubMedGoogle Scholar
  35. 35.
    Rieger M, Osterborg A, Pettengell R, et al. Primary mediastinal B-cell lymphoma treated with CHOP-like chemotherapy with or without rituximab: results of the Mabthera International Trial Group study. Ann Oncol. 2011;22(3):664–70.CrossRefPubMedGoogle Scholar
  36. 36.
    Savage KJ, Al-Rajhi N, Voss N, et al. Favorable outcome of primary mediastinal large B-cell lymphoma in a single institution: the British Columbia experience. Ann Oncol. 2006;17(1):123–30.CrossRefPubMedGoogle Scholar
  37. 37.
    Soumerai JD, Hellmann MD, Feng Y, et al. Treatment of primary mediastinal B-cell lymphoma with rituximab, cyclophosphamide, doxorubicin, vincristine and prednisone is associated with a high rate of primary refractory disease. Leuk Lymphoma. 2014;55(3):538–43.CrossRefPubMedGoogle Scholar
  38. 38.
    Vassilakopoulos TP, Pangalis GA, Katsigiannis A, et al. Rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone with or without radiotherapy in primary mediastinal large B-cell lymphoma: the emerging standard of care. Oncologist. 2012;17(2):239–49.CrossRefPubMedGoogle Scholar
  39. 39.
    Zinzani PL, Broccoli A, Casadei B, et al. The role of rituximab and positron emission tomography in the treatment of primary mediastinal large B-cell lymphoma: experience on 74 patients. Hematol Oncol. 2015;33(4):145–50.CrossRefPubMedGoogle Scholar
  40. 40.
    Zinzani PL, Stefoni V, Finolezzi E, et al. Rituximab combined with MACOP-B or VACOP-B and radiation therapy in primary mediastinal large B-cell lymphoma: a retrospective study. Clin Lymphoma Myeloma. 2009;9(5):381–5.CrossRefPubMedGoogle Scholar
  41. 41.
    Dunleavy K, Pittaluga S, Maeda LS, et al. Dose-adjusted EPOCH-rituximab therapy in primary mediastinal B-cell lymphoma. N Engl J Med. 2013;368(15):1408–16.CrossRefPubMedGoogle Scholar
  42. 42.
    Giulino-Roth L, O’Donohue T, Chen Z, et al. Outcomes of adults and children with primary mediastinal B-cell lymphoma treated with dose-adjusted EPOCH-R. Br J Haematol. 2017;179(5):739–47.CrossRefGoogle Scholar
  43. 43.
    Pinnix CC, Dabaja B, Ahmed MA, et al. Single-institution experience in the treatment of primary mediastinal B cell lymphoma treated with immunochemotherapy in the setting of response assessment by 18fluorodeoxyglucose positron emission tomography. Int J Radiat Oncol Biol Phys. 2015;92(1):113–21.CrossRefPubMedGoogle Scholar
  44. 44.
    Burke GAA, Gross TG, Pillon M, et al. Results of Inter-B-NHL Ritux 2010 – Phase II Study of DA-EPOCH-R for Children and Adolescents with Primary Mediastinal Large B-Cell Lymphoma (PMLBL) on Behalf of European Intergroup for Childhood Non Hodgkin’s Lymphoma (EICNHL) and Children’s Oncology Group (COG). Blood. 2017;130(Suppl 1):4124.Google Scholar
  45. 45.
    Wilson WH, Pittaluga S, Nicolae A, et al. A prospective study of mediastinal gray-zone lymphoma. Blood. 2014;124(10):1563–9.CrossRefPubMedGoogle Scholar
  46. 46.
    Sarkozy C, Molina T, Ghesquieres H, et al. Mediastinal gray zone lymphoma: clinico-pathological characteristics and outcomes of 99 patients from the Lymphoma Study Association. Haematologica. 2017;102(1):150–9.CrossRefPubMedGoogle Scholar
  47. 47.
    Evens AM, Kanakry JA, Sehn LH, et al. Gray zone lymphoma with features intermediate between classical Hodgkin lymphoma and diffuse large B-cell lymphoma: characteristics, outcomes, and prognostication among a large multicenter cohort. Am J Hematol. 2015;90(9):778–83.CrossRefPubMedGoogle Scholar
  48. 48.
    Chihara D, Westin JR, Miranda RN, et al. Dose adjusted-EPOCH-R and mediastinal disease may improve outcomes for patients with gray-zone lymphoma. Br J Haematol. 2017;179(3):503–6.CrossRefPubMedGoogle Scholar
  49. 49.
    Moskowitz C, Hamlin PA, Maragulia J, Meikle J, Zelenetz AD. Sequential dose-dense RCHOP followed by ICE consolidation (MSKCC protocol 01–142) without radiotherapy for patients with primary mediastinal large B cell lymphoma. Blood. 2010;116(21):420.Google Scholar
  50. 50.
    Moskowitz CH, Schoder H, Teruya-Feldstein J, et al. Risk-adapted dose-dense immunochemotherapy determined by interim FDG-PET in Advanced-stage diffuse large B-Cell lymphoma. J Clin Oncol. 2010;28(11):1896–903.CrossRefPubMedGoogle Scholar
  51. 51.
    Melani C, Advani R, Roschewski M, et al. End-of-treatment and serial PET imaging in primary mediastinal B-cell lymphoma following dose-adjusted-EPOCH-R: a paradigm shift in clinical decision making. Haematologica. 2018;103(8):1337–44.CrossRefPubMedGoogle Scholar
  52. 52.
    Savage KJ, Yenson PR, Shenkier T, et al. The outcome of primary mediastinal large B-cell lymphoma (PMBCL) in the R-CHOP treatment era. Blood. 2012;120(21):303.Google Scholar
  53. 53.
    Cavalli F, Ceriani L, Zucca E. Functional imaging using 18-Fluorodeoxyglucose PET in the management of primary mediastinal large B-cell lymphoma: the contributions of the International Extranodal Lymphoma Study Group. Am Soc Clin Oncol Educ Book. 2016;35:e368–75.CrossRefPubMedGoogle Scholar
  54. 54.
    Aoki T, Shimada K, Suzuki R, et al. High-dose chemotherapy followed by autologous stem cell transplantation for relapsed/refractory primary mediastinal large B-cell lymphoma. Blood Cancer J. 2015;5:e372.CrossRefPubMedGoogle Scholar
  55. 55.
    Hamlin PA, Portlock CS, Straus DJ, et al. Primary mediastinal large B-cell lymphoma: optimal therapy and prognostic factor analysis in 141 consecutive patients treated at Memorial Sloan Kettering from 1980 to 1999. Br J Haematol. 2005;130(5):691–9.CrossRefPubMedGoogle Scholar
  56. 56.
    Kuruvilla J, Pintilie M, Tsang R, Nagy T, Keating A, Crump M. Salvage chemotherapy and autologous stem cell transplantation are inferior for relapsed or refractory primary mediastinal large B-cell lymphoma compared with diffuse large B-cell lymphoma. Leuk Lymphoma. 2008;49(7):1329–36.CrossRefPubMedGoogle Scholar
  57. 57.
    Sehn LH, Antin JH, Shulman LN, et al. Primary diffuse large B-cell lymphoma of the mediastinum: outcome following high-dose chemotherapy and autologous hematopoietic cell transplantation. Blood. 1998;91(2):717–23.PubMedGoogle Scholar
  58. 58.
    Kharfan-Dabaja MA, Raj R, Nikolaenko L, et al. Efficacy of high-dose therapy and autologous hematopoietic cell transplantation in gray zone lymphoma: a US Multicenter Collaborative Study. Biol Blood Marrow Transplant. 2018;24(3):486–93.CrossRefPubMedGoogle Scholar
  59. 59.
    Zinzani PL, Pellegrini C, Chiappella A, et al. Brentuximab vedotin in relapsed primary mediastinal large B-cell lymphoma: results from a phase 2 clinical trial. Blood. 2017;129(16):2328–30.CrossRefPubMedGoogle Scholar
  60. 60.
    Jacobsen ED, Sharman JP, Oki Y, et al. Brentuximab vedotin demonstrates objective responses in a phase 2 study of relapsed/refractory DLBCL with variable CD30 expression. Blood. 2015;125(9):1394–402.CrossRefPubMedGoogle Scholar
  61. 61.
    Li J, Sim J, Leung AYH, Kwong YL. Favorable response of relapsed/refractory gray-zone lymphoma to brentuximab vedotin. Ann Hematol. 2018;97(3):551–4.CrossRefPubMedGoogle Scholar
  62. 62.
    Joos S, Otano-Joos MI, Ziegler S, et al. Primary mediastinal (thymic) B-cell lymphoma is characterized by gains of chromosomal material including 9p and amplification of the REL gene. Blood. 1996;87(4):1571–8.PubMedGoogle Scholar
  63. 63.
    Zinzani PL, Ribrag V, Moskowitz CH, et al. Safety and tolerability of pembrolizumab in patients with relapsed/refractory primary mediastinal large B-cell lymphoma. Blood. 2017;130(3):267–70.CrossRefPubMedGoogle Scholar
  64. 64.
    Zinzani PL, Thieblemont C, Melnichenko V, et al. Efficacy and safety of pembrolizumab in relapsed/refractory primary mediastinal large B-cell lymphoma (rrPMBCL): updated analysis of the Keynote-170 Phase 2 Trial. Blood. 2017;130(Suppl 1):2833.Google Scholar
  65. 65.
    Melani C, Major A, Schowinsky J, et al. PD-1 blockade in mediastinal gray-zone lymphoma. N Engl J Med. 2017;377(1):89–91.CrossRefPubMedGoogle Scholar
  66. 66.
    Armand P, Shipp MA, Ribrag V, et al. Programmed death-1 blockade with pembrolizumab in patients with classical hodgkin lymphoma after brentuximab vedotin failure. J Clin Oncol. 2016;34(31):3733–9.CrossRefPubMedGoogle Scholar
  67. 67.
    Lesokhin AM, Ansell SM, Armand P, et al. Nivolumab in patients with relapsed or refractory hematologic malignancy: preliminary results of a phase Ib study. J Clin Oncol. 2016;34(23):2698–704.CrossRefPubMedGoogle Scholar
  68. 68.
    Kim SJ, Kang HJ, Dong-Yeop S, et al. The efficacy of JAK2 inhibitor in heavily pretreated classical Hodgkin lymphoma: a prospective pilot study of ruxolitinib in relapsed or refractory classical Hodgkin lymphoma and primary mediastinal large B-cell lymphoma. Blood. 2016;128(22):1820.Google Scholar
  69. 69.
    Younes A, Hilden P, Coiffier B, et al. International Working Group consensus response evaluation criteria in lymphoma (RECIL 2017). Ann Oncol. 2017;28(7):1436–47.CrossRefPubMedGoogle Scholar
  70. 70.
    Neelapu SS, Locke FL, Bartlett NL, et al. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N Engl J Med. 2017;377(26):2531–44.CrossRefPubMedGoogle Scholar
  71. 71.
    Abramson JS, Palomba ML, Gordon LI, et al. CR rates in relapsed/refractory (R/R) aggressive B-NHL treated with the CD19-directed CAR T-cell product JCAR017 (TRANSCEND NHL 001). J Clin Oncol. 2017;35(15_suppl):7513.CrossRefGoogle Scholar
  72. 72.
    Kochenderfer JN, Dudley ME, Kassim SH, et al. Chemotherapy-refractory diffuse large B-cell lymphoma and indolent B-cell malignancies can be effectively treated with autologous T cells expressing an anti-CD19 chimeric antigen receptor. J Clin Oncol. 2015;33(6):540–9.CrossRefPubMedGoogle Scholar
  73. 73.
    Wöessmann W, Lisfeld J, Burkhardt B, NHL-BFM Study Group. Therapy in primary mediastinal B-cell lymphoma. N Engl J Med. 2013;369(3):282. https://doi.org/10.1056/NEJMc1305983.

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Division of Pediatric Hematology OncologyWeill Cornell Medical CollegeNew YorkUSA
  2. 2.Division of Hematology/OncologyGeorge Washington University Cancer CenterWashington, DCUSA

Personalised recommendations