Advertisement

Prognostic Factors in Childhood and Adolescent Non-Hodgkin Lymphoma

  • Marta Pillon
  • Ana C. Xavier
  • Mitchell S. CairoEmail author
Chapter

Abstract

Pediatric non-Hodgkin lymphoma (pNHL) is a heterogeneous group of diseases in their morphologic characteristics, clinical behavior, biological features, and response to therapy. Understanding the complexity of pNHL and predicting which subset of patients will not respond to primary treatment or will suffer a relapse are crucial. In this chapter, we will discuss clinical and biological factors that have been found to be of prognostic significance in pNHL. The discussion will be limited to anaplastic large cell lymphoma, T-cell lymphoblastic lymphoma, and aggressive mature B-cell lymphomas, the most common subtypes of NHL affecting children and adolescents.

Keywords

Prognostic factors Pediatrics Lymphoma, non-Hodgkin Precursor T-cell lymphoblastic leukemia-lymphoma Lymphoma, large cell, anaplastic Burkitt lymphoma Lymphoma, large B-cell, diffuse 

Notes

Acknowledgments

The authors would like to thank Elisa Carraro and Erin Morris, RN, for their careful assistance in the development of this chapter.

References

  1. 1.
    Sandlund JT, Downing JR, Crist WM. Non-Hodgkin’s lymphoma in childhood. N Engl J Med. 1996;334(19):1238–48.PubMedCrossRefGoogle Scholar
  2. 2.
    Stein H, Foss HD, Durkop H, Marafioti T, Delsol G, Pulford K, et al. CD30(+) anaplastic large cell lymphoma: a review of its histopathologic, genetic, and clinical features. Blood. 2000;96(12):3681–95.Google Scholar
  3. 3.
    Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, et al. WHO classification of tumours of haematopoietic and lymphoid tissues. IARC: Lyon; 2008.Google Scholar
  4. 4.
    Schwab U, Stein H, Gerdes J, Lemke H, Kirchner H, Schaadt M, et al. Production of a monoclonal antibody specific for Hodgkin and Sternberg-Reed cells of Hodgkin’s disease and a subset of normal lymphoid cells. Nature. 1982;299(5878):65–7.PubMedCrossRefGoogle Scholar
  5. 5.
    Horie R, Watanabe T. CD30: expression and function in health and disease. Semin Immunol. 1998;10(6):457–70.PubMedCrossRefGoogle Scholar
  6. 6.
    Wright CW, Duckett CS. The aryl hydrocarbon nuclear translocator alters CD30-mediated NF-kappaB-dependent transcription. Science. 2009;323(5911):251–5.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Hirsch B, Hummel M, Bentink S, Fouladi F, Spang R, Zollinger R, et al. CD30-induced signaling is absent in Hodgkin’s cells but present in anaplastic large cell lymphoma cells. Am J Pathol. 2008;172(2):510–20.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Kaneko Y, Frizzera G, Edamura S, Maseki N, Sakurai M, Komada Y, et al. A novel translocation, t(2;5)(p23;q35), in childhood phagocytic large T-cell lymphoma mimicking malignant histiocytosis. Blood. 1989;73(3):806–13.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Morris SW, Kirstein MN, Valentine MB, Dittmer KG, Shapiro DN, Saltman DL, et al. Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin’s lymphoma. Science. 1994;263(5151):1281–4.CrossRefGoogle Scholar
  10. 10.
    Chiarle R, Voena C, Ambrogio C, Piva R, Inghirami G. The anaplastic lymphoma kinase in the pathogenesis of cancer. Nat Rev Cancer. 2008;8(1):11–23.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Werner MT, Zhao C, Zhang Q, Wasik MA. Nucleophosmin-anaplastic lymphoma kinase: the ultimate oncogene and therapeutic target. Blood. 2017;129(7):823–31.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Rosolen A, Pillon M, Garaventa A, Burnelli R, d’Amore ES, Giuliano M, et al. Anaplastic large cell lymphoma treated with a leukemia-like therapy: report of the Italian Association of Pediatric Hematology and Oncology (AIEOP) LNH-92 protocol. Cancer. 2005;104(10):2133–40.PubMedCrossRefGoogle Scholar
  13. 13.
    Lowe EJ, Sposto R, Perkins SL, Gross TG, Finlay J, Zwick D, et al. Intensive chemotherapy for systemic anaplastic large cell lymphoma in children and adolescents: final results of Children’s Cancer Group Study 5941. Pediatr Blood Cancer. 2009;52(3):335–9.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Seidemann K, Tiemann M, Schrappe M, Yakisan E, Simonitsch I, Janka-Schaub G, et al. Short-pulse B-non-Hodgkin lymphoma-type chemotherapy is efficacious treatment for pediatric anaplastic large cell lymphoma: a report of the Berlin-Frankfurt-Munster Group Trial NHL-BFM 90. Blood. 2001;97(12):3699–706.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Brugieres L, Le Deley MC, Rosolen A, Williams D, Horibe K, Wrobel G, et al. Impact of the methotrexate administration dose on the need for intrathecal treatment in children and adolescents with anaplastic large-cell lymphoma: results of a randomized trial of the EICNHL Group. J Clin Oncol. 2009;27(6):897–903.PubMedCrossRefGoogle Scholar
  16. 16.
    Lamant L, McCarthy K, d’Amore E, Klapper W, Nakagawa A, Fraga M, et al. Prognostic impact of morphologic and phenotypic features of childhood ALK-positive anaplastic large-cell lymphoma: results of the ALCL99 study. J Clin Oncol. 2011;29(35):4669–76.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Youd E, Boyde AM, Attanoos RL, Dojcinov SD. Small cell variant of anaplastic large cell lymphoma: a 10-year review of the All Wales Lymphoma Panel database. Histopathology. 2009;55(3):355–8.PubMedCrossRefGoogle Scholar
  18. 18.
    Kinney MC, Collins RD, Greer JP, Whitlock JA, Sioutos N, Kadin ME. A small-cell-predominant variant of primary Ki-1 (CD30)+ T-cell lymphoma. Am J Surg Pathol. 1993;17(9):859–68.PubMedCrossRefGoogle Scholar
  19. 19.
    Brugieres L, Deley MC, Pacquement H, Meguerian-Bedoyan Z, Terrier-Lacombe MJ, Robert A, et al. CD30(+) anaplastic large-cell lymphoma in children: analysis of 82 patients enrolled in two consecutive studies of the French Society of Pediatric Oncology. Blood. 1998;92(10):3591–8.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Damm-Welk C, Busch K, Burkhardt B, Schieferstein J, Viehmann S, Oschlies I, et al. Prognostic significance of circulating tumor cells in bone marrow or peripheral blood as detected by qualitative and quantitative PCR in pediatric NPM-ALK-positive anaplastic large-cell lymphoma. Blood. 2007;110(2):670–7.PubMedCrossRefGoogle Scholar
  21. 21.
    Benharroch D, Meguerian-Bedoyan Z, Lamant L, Amin C, Brugieres L, Terrier-Lacombe MJ, et al. ALK-positive lymphoma: a single disease with a broad spectrum of morphology. Blood. 1998;91(6):2076–84.PubMedGoogle Scholar
  22. 22.
    Lamant L, de Reynies A, Duplantier MM, Rickman DS, Sabourdy F, Giuriato S, et al. Gene-expression profiling of systemic anaplastic large-cell lymphoma reveals differences based on ALK status and two distinct morphologic ALK+ subtypes. Blood. 2007;109(5):2156–64.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Iwahara T, Fujimoto J, Wen D, Cupples R, Bucay N, Arakawa T, et al. Molecular characterization of ALK, a receptor tyrosine kinase expressed specifically in the nervous system. Oncogene. 1997;14(4):439–49.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Falini B, Pileri S, Zinzani PL, Carbone A, Zagonel V, Wolf-Peeters C, et al. ALK+ lymphoma: clinico-pathological findings and outcome. Blood. 1999;93(8):2697–706.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Perkins SL, Pickering D, Lowe EJ, Zwick D, Abromowitch M, Davenport G, et al. Childhood anaplastic large cell lymphoma has a high incidence of ALK gene rearrangement as determined by immunohistochemical staining and fluorescent in situ hybridisation: a genetic and pathological correlation. Br J Haematol. 2005;131(5):624–7.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Kalinova M, Krskova L, Brizova H, Kabickova E, Kepak T, Kodet R. Quantitative PCR detection of NPM/ALK fusion gene and CD30 gene expression in patients with anaplastic large cell lymphoma--residual disease monitoring and a correlation with the disease status. Leuk Res. 2008;32(1):25–32.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Shiota M, Nakamura S, Ichinohasama R, Abe M, Akagi T, Takeshita M, et al. Anaplastic large cell lymphomas expressing the novel chimeric protein p80NPM/ALK: a distinct clinicopathologic entity. Blood. 1995;86(5):1954–60.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Gascoyne RD, Aoun P, Wu D, Chhanabhai M, Skinnider BF, Greiner TC, et al. Prognostic significance of anaplastic lymphoma kinase (ALK) protein expression in adults with anaplastic large cell lymphoma. Blood. 1999;93(11):3913–21.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Suzuki R, Kagami Y, Takeuchi K, Kami M, Okamoto M, Ichinohasama R, et al. Prognostic significance of CD56 expression for ALK-positive and ALK-negative anaplastic large-cell lymphoma of T/null cell phenotype. Blood. 2000;96(9):2993–3000.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Savage KJ, Harris NL, Vose JM, Ullrich F, Jaffe ES, Connors JM, et al. ALK- anaplastic large-cell lymphoma is clinically and immunophenotypically different from both ALK+ ALCL and peripheral T-cell lymphoma, not otherwise specified: report from the International Peripheral T-Cell Lymphoma Project. Blood. 2008;111(12):5496–504.PubMedCrossRefGoogle Scholar
  31. 31.
    Hassler MR, Pulverer W, Lakshminarasimhan R, Redl E, Hacker J, Garland GD, et al. Insights into the pathogenesis of anaplastic large-cell lymphoma through genome-wide DNA methylation profiling. Cell Rep. 2016;17(2):596–608.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Hapgood G, Savage KJ. The biology and management of systemic anaplastic large cell lymphoma. Blood. 2015;126(1):17–25.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Mereu E, Pellegrino E, Scarfo I, Inghirami G, Piva R. The heterogeneous landscape of ALK negative ALCL. Oncotarget. 2017;8(11):18525–36.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Vasmatzis G, Johnson SH, Knudson RA, Ketterling RP, Braggio E, Fonseca R, et al. Genome-wide analysis reveals recurrent structural abnormalities of TP63 and other p53-related genes in peripheral T-cell lymphomas. Blood. 2012;120(11):2280–9.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Parrilla Castellar ER, Jaffe ES, Said JW, Swerdlow SH, Ketterling RP, Knudson RA, et al. ALK-negative anaplastic large cell lymphoma is a genetically heterogeneous disease with widely disparate clinical outcomes. Blood. 2014;124(9):1473–80.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Pedersen MB, Hamilton-Dutoit SJ, Bendix K, Ketterling RP, Bedroske PP, Luoma IM, et al. DUSP22 and TP63 rearrangements predict outcome of ALK-negative anaplastic large cell lymphoma: a Danish cohort study. Blood. 2017;130(4):554–7.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Pasqualini C, Minard-Colin V, Saada V, Lamant L, Delsol G, Patte C, et al. Clinical analysis and prognostic significance of haemophagocytic lymphohistiocytosis-associated anaplastic large cell lymphoma in children. Br J Haematol. 2014;165:117.PubMedCrossRefGoogle Scholar
  38. 38.
    d’Amore ES, Menin A, Bonoldi E, Bevilacqua P, Cazzavillan S, Donofrio V, et al. Anaplastic large cell lymphomas: a study of 75 pediatric patients. Pediatr Dev Pathol. 2007;10(3):181–91.PubMedCrossRefGoogle Scholar
  39. 39.
    Abramov D, Oschlies I, Zimmermann M, Konovalov D, Damm-Welk C, Wossmann W, et al. Expression of CD8 is associated with non-common type morphology and outcome in pediatric anaplastic lymphoma kinase-positive anaplastic large cell lymphoma. Haematologica. 2013;98(10):1547–53.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Nasr MR, Laver JH, Chang M, Hutchison RE. Expression of anaplastic lymphoma kinase, tyrosine-phosphorylated STAT3, and associated factors in pediatric anaplastic large cell lymphoma: a report from the children’s oncology group. Am J Clin Pathol. 2007;127(5):770–8.PubMedCrossRefGoogle Scholar
  41. 41.
    Gritsko T, Williams A, Turkson J, Kaneko S, Bowman T, Huang M, et al. Persistent activation of stat3 signaling induces survivin gene expression and confers resistance to apoptosis in human breast cancer cells. Clin Cancer Res. 2006;12(1):11–9.PubMedCrossRefGoogle Scholar
  42. 42.
    Schlette EJ, Medeiros LJ, Goy A, Lai R, Rassidakis GZ. Survivin expression predicts poorer prognosis in anaplastic large-cell lymphoma. J Clin Oncol. 2004;22(9):1682–8.PubMedCrossRefGoogle Scholar
  43. 43.
    Le Deley MC, Reiter A, Williams D, Delsol G, Oschlies I, McCarthy K, et al. Prognostic factors in childhood anaplastic large cell lymphoma: results of a large European intergroup study. Blood. 2008;111(3):1560–6.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Gisselbrecht C, Gaulard P, Lepage E, Coiffier B, Briere J, Haioun C, et al. Prognostic significance of T-cell phenotype in aggressive non-Hodgkin’s lymphomas. Groupe d’Etudes des Lymphomes de l’Adulte (GELA). Blood. 1998;92(1):76–82.PubMedGoogle Scholar
  45. 45.
    Carbone PP, Kaplan HS, Musshoff K, Smithers DW, Tubiana M. Report of the committee on Hodgkin’s disease staging classification. Cancer Res. 1971;31(11):1860–1.PubMedGoogle Scholar
  46. 46.
    Lister TA, Crowther D, Sutcliffe SB, Glatstein E, Canellos GP, Young RC, et al. Report of a committee convened to discuss the evaluation and staging of patients with Hodgkin’s disease: Cotswolds meeting. J Clin Oncol. 1989;7(11):1630–6.CrossRefGoogle Scholar
  47. 47.
    Murphy SB. Classification, staging and end results of treatment of childhood non-Hodgkin’s lymphomas: dissimilarities from lymphomas in adults. Semin Oncol. 1980;7(3):332–9.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Williams DM, Hobson R, Imeson J, Gerrard M, McCarthy K, Pinkerton CR, et al. Anaplastic large cell lymphoma in childhood: analysis of 72 patients treated on The United Kingdom Children’s Cancer Study Group chemotherapy regimens. Br J Haematol. 2002;117(4):812–20.PubMedCrossRefGoogle Scholar
  49. 49.
    Fraga M, Brousset P, Schlaifer D, Payen C, Robert A, Rubie H, et al. Bone marrow involvement in anaplastic large cell lymphoma. Immunohistochemical detection of minimal disease and its prognostic significance. Am J Clin Pathol. 1995;103(1):82–9.PubMedCrossRefGoogle Scholar
  50. 50.
    Mussolin L, Pillon M, d’Amore ES, Santoro N, Lombardi A, Fagioli F, et al. Prevalence and clinical implications of bone marrow involvement in pediatric anaplastic large cell lymphoma. Leukemia. 2005;19(9):1643–7.PubMedCrossRefGoogle Scholar
  51. 51.
    Damm-Welk C, Schieferstein J, Schwalm S, Reiter A, Woessmann W. Flow cytometric detection of circulating tumour cells in nucleophosmin/anaplastic lymphoma kinase-positive anaplastic large cell lymphoma: comparison with quantitative polymerase chain reaction. Br J Haematol. 2007;138(4):459–66.PubMedCrossRefGoogle Scholar
  52. 52.
    Mussolin L, Damm-Welk C, Pillon M, Zimmermann M, Franceschetto G, Pulford K, et al. Use of minimal disseminated disease and immunity to NPM-ALK antigen to stratify ALK-positive ALCL patients with different prognosis. Leukemia. 2013;27(2):416–22.CrossRefGoogle Scholar
  53. 53.
    Sibon D, Fournier M, Briere J, Lamant L, Haioun C, Coiffier B, et al. Long-term outcome of adults with systemic anaplastic large-cell lymphoma treated within the Groupe d’Etude des Lymphomes de l’Adulte trials. J Clin Oncol. 2012;30(32):3939–46.PubMedCrossRefGoogle Scholar
  54. 54.
    Guru Murthy GS, Hamadani M, Bhatt VR, Dhakal I, Mehta P. Systemic anaplastic lymphoma kinase-positive anaplastic large cell lymphoma: a population-based analysis of incidence and survival. Clin Lymphoma Myeloma Leuk. 2017;17(4):201–6.PubMedCrossRefGoogle Scholar
  55. 55.
    Pulford K, Falini B, Banham AH, Codrington D, Roberton H, Hatton C, et al. Immune response to the ALK oncogenic tyrosine kinase in patients with anaplastic large-cell lymphoma. Blood. 2000;96(4):1605–7.PubMedPubMedCentralGoogle Scholar
  56. 56.
    Passoni L, Scardino A, Bertazzoli C, Gallo B, Coluccia AM, Lemonnier FA, et al. ALK as a novel lymphoma-associated tumor antigen: identification of 2 HLA-A2.1-restricted CD8+ T-cell epitopes. Blood. 2002;99(6):2100–6.PubMedCrossRefGoogle Scholar
  57. 57.
    Singh VK, Werner S, Hackstein H, Lennerz V, Reiter A, Wolfel T, et al. Analysis of nucleophosmin-anaplastic lymphoma kinase (NPM-ALK)-reactive CD8+ T cell responses in children wiht NPM-ALK+ anaplastic large cell lymphoma. Clin Exp Immunol. 2016;186(1):96–105.CrossRefGoogle Scholar
  58. 58.
    Knorr F, Damm-Welk C, Ruf S, Singh VK, Zimmermann M, Reiter A, et al. Blood cytokine concentrations of pediatric anaplastic lymphoma kinase-positive anaplastic large cell lymphoma patients. Haematologica. 2018;103(3):477–85.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Ait-Tahar K, Damm-Welk C, Burkhardt B, Zimmermann M, Klapper W, Reiter A, et al. Correlation of the autoantibody response to the ALK oncoantigen in pediatric anaplastic lymphoma kinase-positive anaplastic large cell lymphoma with tumor dissemination and relapse risk. Blood. 2010;115(16):3314–9.PubMedCrossRefGoogle Scholar
  60. 60.
    Mussolin L, Pillon M, Zimmermann M, Carraro E, Basso G, Knoerr F, et al. Course of anti-ALK antibody titres during chemotherapy in children with anaplastic large cell lymphoma. Br J Haematol. 2018;182(5):733–5.PubMedCrossRefGoogle Scholar
  61. 61.
    Josimovic-Alasevic O, Durkop H, Schwarting R, Backe E, Stein H, Diamantstein T. Ki-1 (CD30) antigen is released by Ki-1-positive tumor cells in vitro and in vivo. I. Partial characterization of soluble Ki-1 antigen and detection of the antigen in cell culture supernatants and in serum by an enzyme-linked immunosorbent assay. Eur J Immunol. 1989;19(1):157–62.PubMedCrossRefGoogle Scholar
  62. 62.
    Pizzolo G, Vinante F, Chilosi M, Dallenbach F, Josimovic-Alasevic O, Diamantstein T, et al. Serum levels of soluble CD30 molecule (Ki-1 antigen) in Hodgkin’s disease: relationship with disease activity and clinical stage. Br J Haematol. 1990;75(2):282–4.PubMedCrossRefGoogle Scholar
  63. 63.
    Nadali G, Vinante F, Stein H, Todeschini G, Tecchio C, Morosato L, et al. Serum levels of the soluble form of CD30 molecule as a tumor marker in CD30+ anaplastic large-cell lymphoma. J Clin Oncol. 1995;13(6):1355–60.PubMedCrossRefGoogle Scholar
  64. 64.
    Zinzani PL, Pileri S, Bendandi M, Buzzi M, Sabattini E, Ascani S, et al. Clinical implications of serum levels of soluble CD30 in 70 adult anaplastic large-cell lymphoma patients. J Clin Oncol. 1998;16(4):1532–7.PubMedCrossRefGoogle Scholar
  65. 65.
    Cortelazzo S, Ponzoni M, Ferreri AJ, Hoelzer D. Lymphoblastic lymphoma. Crit Rev Oncol Hematol. 2011;79(3):330–43.PubMedCrossRefGoogle Scholar
  66. 66.
    Sekimizu M, Sunami S, Nakazawa A, Hayashi Y, Okimoto Y, Saito AM, et al. Chromosome abnormalities in advanced stage T-cell lymphoblastic lymphoma of children and adolescents: a report from Japanese Paediatric Leukaemia/Lymphoma Study Group (JPLSG) and review of the literature. Br J Haematol. 2011;154(5):612–7.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    van Dongen JJ, Wolvers-Tettero IL. Analysis of immunoglobulin and T cell receptor genes. Part II: possibilities and limitations in the diagnosis and management of lymphoproliferative diseases and related disorders. Clin Chim Acta. 1991;198(1–2):93–174.PubMedCrossRefGoogle Scholar
  68. 68.
    Raetz EA, Perkins SL, Bhojwani D, Smock K, Philip M, Carroll WL, et al. Gene expression profiling reveals intrinsic differences between T-cell acute lymphoblastic leukemia and T-cell lymphoblastic lymphoma. Pediatr Blood Cancer. 2006;47(2):130–40.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Uyttebroeck A, Vanhentenrijk V, Hagemeijer A, Boeckx N, Renard M, Wlodarska I, et al. Is there a difference in childhood T-cell acute lymphoblastic leukaemia and T-cell lymphoblastic lymphoma? Leuk Lymphoma. 2007;48(9):1745–54.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Basso K, Mussolin L, Lettieri A, Brahmachary M, Lim WK, Califano A, et al. T-cell lymphoblastic lymphoma shows differences and similarities with T-cell acute lymphoblastic leukemia by genomic and gene expression analyses. Genes Chromosomes Cancer. 2011;50(12):1063–75.CrossRefGoogle Scholar
  71. 71.
    Bonn BR, Huge A, Rohde M, Oschlies I, Klapper W, Voss R, et al. Whole exome sequencing hints at a unique mutational profile of paediatric T-cell lymphoblastic lymphoma. Br J Haematol. 2015;168(2):308–13.CrossRefGoogle Scholar
  72. 72.
    Bonn BR, Rohde M, Zimmermann M, Krieger D, Oschlies I, Niggli F, et al. Incidence and prognostic relevance of genetic variations in T-cell lymphoblastic lymphoma in childhood and adolescence. Blood. 2013;121(16):3153–60.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Weng AP, Ferrando AA, Lee W, Morris JP, Silverman LB, Sanchez-Irizarry C, et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science. 2004;306(5694):269–71.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Matsuoka S, Oike Y, Onoyama I, Iwama A, Arai F, Takubo K, et al. Fbxw7 acts as a critical fail-safe against premature loss of hematopoietic stem cells and development of T-ALL. Genes Dev. 2008;22(8):986–91.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Callens C, Baleydier F, Lengline E, Ben Abdelali R, Petit A, Villarese P, et al. Clinical impact of NOTCH1 and/or FBXW7 mutations, FLASH deletion, and TCR status in pediatric T-cell lymphoblastic lymphoma. J Clin Oncol. 2012;30(16):1966–73.CrossRefGoogle Scholar
  76. 76.
    Burkhardt B, Bruch J, Zimmermann M, Strauch K, Parwaresch R, Ludwig WD, et al. Loss of heterozygosity on chromosome 6q14-q24 is associated with poor outcome in children and adolescents with T-cell lymphoblastic lymphoma. Leukemia. 2006;20(8):1422–9.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Lepretre S, Touzart A, Vermeulin T, Picquenot JM, Tanguy-Schmidt A, Salles G, et al. Pediatric-like acute lymphoblastic leukemia therapy in adults with lymphoblastic lymphoma: the GRAALL-LYSA LL03 study. J Clin Oncol. 2016;34(6):572–80.PubMedCrossRefGoogle Scholar
  78. 78.
    Balbach ST, Makarova O, Bonn BR, Zimmermann M, Rohde M, Oschlies I, et al. Proposal of a genetic classifier for risk group stratification in pediatric T-cell lymphoblastic lymphoma reveals differences from adult T-cell lymphoblastic leukemia. Leukemia. 2016;30(4):970–3.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Baleydier F, Decouvelaere AV, Bergeron J, Gaulard P, Canioni D, Bertrand Y, et al. T cell receptor genotyping and HOXA/TLX1 expression define three T lymphoblastic lymphoma subsets which might affect clinical outcome. Clin Cancer Res. 2008;14(3):692–700.CrossRefGoogle Scholar
  80. 80.
    Reiter A, Schrappe M, Ludwig WD, Tiemann M, Parwaresch R, Zimmermann M, et al. Intensive ALL-type therapy without local radiotherapy provides a 90% event-free survival for children with T-cell lymphoblastic lymphoma: a BFM group report. Blood. 2000;95(2):416–21.PubMedPubMedCentralGoogle Scholar
  81. 81.
    Mora J, Filippa DA, Qin J, Wollner N. Lymphoblastic lymphoma of childhood and the LSA2-L2 protocol: the 30-year experience at Memorial-Sloan-Kettering Cancer Center. Cancer. 2003;98(6):1283–91.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Jabbour E, Koscielny S, Sebban C, Peslin N, Patte C, Gargi T, et al. High survival rate with the LMT-89 regimen in lymphoblastic lymphoma (LL), but not in T-cell acute lymphoblastic leukemia (T-ALL). Leukemia. 2006;20(5):814–9.PubMedCrossRefGoogle Scholar
  83. 83.
    Shepherd SF, A’Hern RP, Pinkerton CR. Childhood T-cell lymphoblastic lymphoma—does early resolution of mediastinal mass predict for final outcome? The United Kingdom Children’s Cancer Study Group (UKCCSG). Br J Cancer. 1995;72(3):752–6.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Attarbaschi A, Mann G, Dworzak M, Wiesbauer P, Schrappe M, Gadner H. Mediastinal mass in childhood T-cell acute lymphoblastic leukemia: significance and therapy response. Med Pediatr Oncol. 2002;39(6):558–65.PubMedCrossRefGoogle Scholar
  85. 85.
    Stark B, Avigad S, Luria D, Manor S, Reshef-Ronen T, Avrahami G, et al. Bone marrow minimal disseminated disease (MDD) and minimal residual disease (MRD) in childhood T-cell lymphoblastic lymphoma stage III, detected by flow cytometry (FC) and real-time quantitative polymerase chain reaction (RQ-PCR). Pediatr Blood Cancer. 2009;52(1):20–5.PubMedCrossRefGoogle Scholar
  86. 86.
    Coustan-Smith E, Sandlund JT, Perkins SL, Chen H, Chang M, Abromowitch M, et al. Minimal disseminated disease in childhood T-cell lymphoblastic lymphoma: a report from the children’s oncology group. J Clin Oncol. 2009;27(21):3533–9.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Mussolin L, Buldini B, Lovisa F, Carraro E, Disaro S, Lo Nigro L, et al. Detection and role of minimal disseminated disease in children with lymphoblastic lymphoma: the AIEOP experience. Pediatr Blood Cancer. 2015;62(11):1906–13.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Seidemann K, Tiemann M, Lauterbach I, Mann G, Simonitsch I, Stankewitz K, et al. Primary mediastinal large B-cell lymphoma with sclerosis in pediatric and adolescent patients: treatment and results from three therapeutic studies of the Berlin-Frankfurt-Munster Group. J Clin Oncol. 2003;21(9):1782–9.PubMedCrossRefGoogle Scholar
  89. 89.
    Burkhardt B, Zimmermann M, Oschlies I, Niggli F, Mann G, Parwaresch R, et al. The impact of age and gender on biology, clinical features and treatment outcome of non-Hodgkin lymphoma in childhood and adolescence. Br J Haematol. 2005;131(1):39–49.CrossRefGoogle Scholar
  90. 90.
    Reiter A, Klapper W. Recent advances in the understanding and management of diffuse large B-cell lymphoma in children. Br J Haematol. 2008;142(3):329–47.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Jemal A, Clegg LX, Ward E, Ries LA, Wu X, Jamison PM, et al. Annual report to the nation on the status of cancer, 1975-2001, with a special feature regarding survival. Cancer. 2004;101(1):3–27.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Raetz E, Perkins S, Davenport V, Cairo MS. B large-cell lymphoma in children and adolescents. Cancer Treat Rev. 2003;29(2):91–8.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Minard-Colin V, Brugieres L, Reiter A, Cairo MS, Gross TG, Woessmann W, et al. Non-Hodgkin lymphoma in children and adolescents: progress through effective collaboration, current knowledge, and challenges ahead. J Clin Oncol. 2015;33(27):2963–74.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Pillon M, Mussolin L, Carraro E, Conter V, Arico M, Vinti L, et al. Detection of prognostic factors in children and adolescents with Burkitt and Diffuse Large B-Cell Lymphoma treated with the AIEOP LNH-97 protocol. Br J Haematol. 2016;175(3):467–75.CrossRefGoogle Scholar
  95. 95.
    Sandlund JT, Martin MG. Non-Hodgkin lymphoma across the pediatric and adolescent and young adult age spectrum. Hematology Am Soc Hematol Educ Program. 2016;2016(1):589–97.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Cairo MS, Gerrard M, Sposto R, Auperin A, Pinkerton CR, Michon J, et al. Results of a randomized international study of high-risk central nervous system B non-Hodgkin lymphoma and B acute lymphoblastic leukemia in children and adolescents. Blood. 2007;109(7):2736–43.PubMedPubMedCentralGoogle Scholar
  97. 97.
    Patte C, Auperin A, Gerrard M, Michon J, Pinkerton R, Sposto R, et al. Results of the randomized international FAB/LMB96 trial for intermediate risk B-cell non-Hodgkin lymphoma in children and adolescents: it is possible to reduce treatment for the early responding patients. Blood. 2007;109(7):2773–80.PubMedPubMedCentralGoogle Scholar
  98. 98.
    Patte C, Auperin A, Michon J, Behrendt H, Leverger G, Frappaz D, et al. The Societe Francaise d’Oncologie Pediatrique LMB89 protocol: highly effective multiagent chemotherapy tailored to the tumor burden and initial response in 561 unselected children with B-cell lymphomas and L3 leukemia. Blood. 2001;97(11):3370–9.CrossRefGoogle Scholar
  99. 99.
    Reiter A, Schrappe M, Tiemann M, Ludwig WD, Yakisan E, Zimmermann M, et al. Improved treatment results in childhood B-cell neoplasms with tailored intensification of therapy: a report of the Berlin-Frankfurt-Munster Group Trial NHL-BFM 90. Blood. 1999;94(10):3294–306.Google Scholar
  100. 100.
    Woessmann W, Seidemann K, Mann G, Zimmermann M, Burkhardt B, Oschlies I, et al. The impact of the methotrexate administration schedule and dose in the treatment of children and adolescents with B-cell neoplasms: a report of the BFM Group Study NHL-BFM95. Blood. 2005;105(3):948–58.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Miles RR, Cairo MS, Satwani P, Zwick DL, Lones MA, Sposto R, et al. Immunophenotypic identification of possible therapeutic targets in paediatric non-Hodgkin lymphomas: a children’s oncology group report. Br J Haematol. 2007;138(4):506–12.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Mussolin L, Basso K, Pillon M, D’Amore ES, Lombardi A, Luzzatto L, et al. Prospective analysis of minimal bone marrow infiltration in pediatric Burkitt’s lymphomas by long-distance polymerase chain reaction for t(8;14)(q24;q32). Leukemia. 2003;17(3):585–9.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Lovisa F, Mussolin L, Corral L, Pillon M, Cazzaniga G, Biondi A, et al. IGH and IGK gene rearrangements as PCR targets for pediatric Burkitt’s lymphoma and mature B-ALL MRD analysis. Lab Investig. 2009;89(10):1182–6.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Mussolin L, Pillon M, Conter V, Piglione M, Lo Nigro L, Pierani P, et al. Prognostic role of minimal residual disease in mature B-cell acute lymphoblastic leukemia of childhood. J Clin Oncol. 2007;25(33):5254–61.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Mussolin L, Pillon M, d’Amore ES, Conter V, Piglione M, Lo Nigro L, et al. Minimal disseminated disease in high-risk Burkitt’s lymphoma identifies patients with different prognosis. J Clin Oncol. 2011;29(13):1779–84.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Rosolen A, Perkins SL, Pinkerton CR, Guillerman RP, Sandlund JT, Patte C, et al. Revised international pediatric non-Hodgkin lymphoma staging system. J Clin Oncol. 2015;33(18):2112–8.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Shiramizu B, Goldman S, Smith L, Agsalda-Garcia M, Galardy P, Perkins SL, et al. Impact of persistent minimal residual disease post-consolidation therapy in children and adolescents with advanced Burkitt leukaemia: a Children’s Oncology Group Pilot Study Report. Br J Haematol. 2015;170(3):367–71.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Attarbaschi A, Carraro E, Abla O, Barzilai-Birenboim S, Bomken S, Brugieres L, et al. Non-Hodgkin lymphoma and pre-existing conditions: spectrum, clinical characteristics and outcome in 213 children and adolescents. Haematologica. 2016;101(12):1581–91.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Miles RR, Raphael M, McCarthy K, Wotherspoon A, Lones MA, Terrier-Lacombe MJ, et al. Pediatric diffuse large B-cell lymphoma demonstrates a high proliferation index, frequent c-Myc protein expression, and a high incidence of germinal center subtype: report of the French-American-British (FAB) international study group. Pediatr Blood Cancer. 2008;51(3):369–74.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Oschlies I, Klapper W, Zimmermann M, Krams M, Wacker HH, Burkhardt B, et al. Diffuse large B-cell lymphoma in pediatric patients belongs predominantly to the germinal-center type B-cell lymphomas: a clinicopathologic analysis of cases included in the German BFM (Berlin-Frankfurt-Munster) Multicenter Trial. Blood. 2006;107(10):4047–52.CrossRefGoogle Scholar
  111. 111.
    Szczepanowski M, Lange J, Kohler CW, Masque-Soler N, Zimmermann M, Aukema SM, et al. Cell-of-origin classification by gene expression and MYC-rearrangements in diffuse large B-cell lymphoma of children and adolescents. Br J Haematol. 2017;179(1):116–9.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Poirel HA, Cairo MS, Heerema NA, Swansbury J, Auperin A, Launay E, et al. Specific cytogenetic abnormalities are associated with a significantly inferior outcome in children and adolescents with mature B-cell non-Hodgkin’s lymphoma: results of the FAB/LMB 96 international study. Leukemia. 2009;23(2):323–31.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Seidemann K, Zimmermann M, Book M, Meyer U, Burkhardt B, Welte K, et al. Tumor necrosis factor and lymphotoxin alfa genetic polymorphisms and outcome in pediatric patients with non-Hodgkin’s lymphoma: results from Berlin-Frankfurt-Munster Trial NHL-BFM 95. J Clin Oncol. 2005;23(33):8414–21.PubMedCrossRefGoogle Scholar
  114. 114.
    Cairo MS, Sposto R, Gerrard M, Auperin A, Goldman SC, Harrison L, et al. Advanced stage, increased lactate dehydrogenase, and primary site, but not adolescent age (>/= 15 years), are associated with an increased risk of treatment failure in children and adolescents with mature B-cell non-Hodgkin’s lymphoma: results of the FAB LMB 96 study. J Clin Oncol. 2012;30(4):387–93.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Salzburg J, Burkhardt B, Zimmermann M, Wachowski O, Woessmann W, Oschlies I, et al. Prevalence, clinical pattern, and outcome of CNS involvement in childhood and adolescent non-Hodgkin’s lymphoma differ by non-Hodgkin’s lymphoma subtype: a Berlin-Frankfurt-Munster Group Report. J Clin Oncol. 2007;25(25):3915–22.PubMedCrossRefGoogle Scholar
  116. 116.
    Pillon M, Carraro E, Mussolin L, Conter V, Tondo A, Arico M, et al. Primary mediastinal large B-cell lymphoma: outcome of a series of pediatric patients treated with high-dose methotrexate and cytarabine plus anti-CD20. Pediatr Blood Cancer. 2018;65(2)CrossRefGoogle Scholar
  117. 117.
    Pillon M, Arico M, Mussolin L, Mainardi C, Giraldi E, Garaventa A, et al. Mediastinal Burkitt lymphoma in childhood. Pediatr Blood Cancer. 2014;61(11):2127–8.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Marta Pillon
    • 1
  • Ana C. Xavier
    • 2
  • Mitchell S. Cairo
    • 3
    • 4
    • 5
    • 6
    • 7
    Email author
  1. 1.Pediatric Hematology and Oncology Unit, Department of Women’s and Children’s HealthUniversity of PadovaPadovaItaly
  2. 2.Division of Hematology/Oncology, Department of PediatricsUniversity of Alabama at BirminghamBirminghamUSA
  3. 3.Department of PediatricsNew York Medical CollegeValhallaUSA
  4. 4.Department of MedicineNew York Medical CollegeValhallaUSA
  5. 5.Department of PathologyNew York Medical CollegeValhallaUSA
  6. 6.Department of Microbiology and ImmunologyNew York Medical CollegeValhallaUSA
  7. 7.Department of Cell Biology and AnatomyNew York Medical CollegeValhallaUSA

Personalised recommendations