Advertisement

Minimal Disseminated and Minimal Residual Disease in Pediatric Non-Hodgkin Lymphoma

  • Lara Mussolin
  • Christine Damm-Welk
  • Wilhelm WoessmannEmail author
Chapter

Abstract

Disease-specific as well as patient-specific markers can be used for the detection of minimal disease in childhood Non-Hodgkin lymphomas. PCR-based and flow cytometric techniques have been developed for the different subtypes. The available data using a flow cytometric assay detecting aberrant phenotypes or a PCR-based method for TCR or Ig rearrangements do not allow defining a prognostic role of minimal disseminated disease (MDD) for lymphoblastic lymphoma yet. In Burkitt lymphoma and leukemia, PCR techniques on the DNA level using Myc-IgH fusion sequences or Ig rearrangements indicate a possible prognostic value of MDD in Burkitt lymphoma and early minimal residual disease (MRD) in Burkitt leukemia. MDD and MRD measured by PCR for ALK fusion transcripts are established independent prognostic parameters for patients with ALK-positive anaplastic large cell lymphoma. Validation of MDD and MRD as prognostic factors is still necessary for all subtypes but ALCL. Next-generation sequencing-based methods may provide new options for the future.

Keywords

Minimal disseminated disease Minimal residual disease Non-Hodgkin lymphoma Children and adolescents Techniques Clinical application Prognostic parameter 

References

  1. 1.
    Bader P, Kreyenberg H, Henze GH, Eckert C, Reising M, Willasch A, Barth A, Borkhardt A, Peters C, Handgretinger R, Sykora KW, Holter W, Kabisch H, Klingebiel T, von Stackelberg A, Group A-RBS. Prognostic value of minimal residual disease quantification before allogeneic stem-cell transplantation in relapsed childhood acute lymphoblastic leukemia: the ALL-REZ BFM Study Group. J Clin Oncol. 2009;27(3):377–84.CrossRefGoogle Scholar
  2. 2.
    Bader P, Kreyenberg H, von Stackelberg A, Eckert C, Salzmann-Manrique E, Meisel R, Poetschger U, Stachel D, Schrappe M, Alten J, Schrauder A, Schulz A, Lang P, Muller I, Albert MH, Willasch AM, Klingebiel TE, Peters C. Monitoring of minimal residual disease after allogeneic stem-cell transplantation in relapsed childhood acute lymphoblastic leukemia allows for the identification of impending relapse: results of the ALL-BFM-SCT 2003 trial. J Clin Oncol. 2015;33(11):1275–84.  https://doi.org/10.1200/JCO.2014.58.4631.CrossRefPubMedGoogle Scholar
  3. 3.
    Campana D, Pui CH. Minimal residual disease-guided therapy in childhood acute lymphoblastic leukemia. Blood. 2017;129(14):1913–8.  https://doi.org/10.1182/blood-2016-12-725804.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Eckert C, Biondi A, Seeger K, Cazzaniga G, Hartmann R, Beyermann B, Pogodda M, Proba J, Henze G. Prognostic value of minimal residual disease in relapsed childhood acute lymphoblastic leukaemia. Lancet. 2001;358(9289):1239–41.  https://doi.org/10.1016/S0140-6736(01)06355-3.CrossRefPubMedGoogle Scholar
  5. 5.
    Eckert C, Hagedorn N, Sramkova L, Mann G, Panzer-Grumayer R, Peters C, Bourquin JP, Klingebiel T, Borkhardt A, Cario G, Alten J, Escherich G, Astrahantseff K, Seeger K, Henze G, von Stackelberg A. Monitoring minimal residual disease in children with high-risk relapses of acute lymphoblastic leukemia: prognostic relevance of early and late assessment. Leukemia. 2015;29(8):1648–55.  https://doi.org/10.1038/leu.2015.59.CrossRefPubMedGoogle Scholar
  6. 6.
    Schrappe M. Detection and management of minimal residual disease in acute lymphoblastic leukemia. Hematology Am Soc Hematol Educ Program. 2014;2014(1):244–9.  https://doi.org/10.1182/asheducation-2014.1.244.CrossRefPubMedGoogle Scholar
  7. 7.
    van Dongen JJ, van der Velden VH, Bruggemann M, Orfao A. Minimal residual disease diagnostics in acute lymphoblastic leukemia: need for sensitive, fast, and standardized technologies. Blood. 2015;125(26):3996–4009.  https://doi.org/10.1182/blood-2015-03-580027.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Chase ML, Armand P. Minimal residual disease in non-Hodgkin lymphoma – current applications and future directions. Br J Haematol. 2018;180(2):177–88.  https://doi.org/10.1111/bjh.14996.CrossRefGoogle Scholar
  9. 9.
    Herrera AF, Armand P. Minimal residual disease assessment in lymphoma: methods and applications. J Clin Oncol. 2017;35(34):3877–87.  https://doi.org/10.1200/JCO.2017.74.5281.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Kuroda T, Morikawa N, Matsuoka K, Fujino A, Honna T, Nakagawa A, Kumagai M, Masaki H, Saeki M. Prognostic significance of circulating tumor cells and bone marrow micrometastasis in advanced neuroblastoma. J Pediatr Surg. 2008;43(12):2182–5.  https://doi.org/10.1016/j.jpedsurg.2008.08.046.CrossRefPubMedGoogle Scholar
  11. 11.
    Kurtz DM, Green MR, Bratman SV, Scherer F, Liu CL, Kunder CA, Takahashi K, Glover C, Keane C, Kihira S, Visser B, Callahan J, Kong KA, Faham M, Corbelli KS, Miklos D, Advani RH, Levy R, Hicks RJ, Hertzberg M, Ohgami RS, Gandhi MK, Diehn M, Alizadeh AA. Noninvasive monitoring of diffuse large B-cell lymphoma by immunoglobulin high-throughput sequencing. Blood. 2015;125(24):3679–87.  https://doi.org/10.1182/blood-2015-03-635169.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Roschewski M, Dunleavy K, Pittaluga S, Moorhead M, Pepin F, Kong K, Shovlin M, Jaffe ES, Staudt LM, Lai C, Steinberg SM, Chen CC, Zheng J, Willis TD, Faham M, Wilson WH. Circulating tumour DNA and CT monitoring in patients with untreated diffuse large B-cell lymphoma: a correlative biomarker study. Lancet Oncol. 2015;16(5):541–9.  https://doi.org/10.1016/S1470-2045(15)70106-3.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Schleiermacher G, Peter M, Oberlin O, Philip T, Rubie H, Mechinaud F, Sommelet-Olive D, Landman-Parker J, Bours D, Michon J, Delattre O. Increased risk of systemic relapses associated with bone marrow micrometastasis and circulating tumor cells in localized Ewing tumor. J Clin Oncol. 2003;21(1):85–91.CrossRefGoogle Scholar
  14. 14.
    Vo KT, Edwards JV, Epling CL, Sinclair E, Hawkins DS, Grier HE, Janeway KA, Barnette P, McIlvaine E, Krailo MD, Barkauskas DA, Matthay KK, Womer RB, Gorlick RG, Lessnick SL, Mackall CL, DuBois SG. Impact of two measures of micrometastatic disease on clinical outcomes in patients with newly diagnosed ewing sarcoma: a report from the Children’s Oncology Group. Clin Cancer Res. 2016;22(14):3643–50.  https://doi.org/10.1158/1078-0432.CCR-15-2516.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Minard-Colin V, Brugieres L, Reiter A, Cairo MS, Gross TG, Woessmann W, Burkhardt B, Sandlund JT, Williams D, Pillon M, Horibe K, Auperin A, Le Deley MC, Zimmerman M, Perkins SL, Raphael M, Lamant L, Klapper W, Mussolin L, Poirel HA, Macintyre E, Damm-Welk C, Rosolen A, Patte C. Non-Hodgkin lymphoma in children and adolescents: progress through effective collaboration, current knowledge, and challenges ahead. J Clin Oncol. 2015;33(27):2963–74.  https://doi.org/10.1200/JCO.2014.59.5827.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Dalla-Favera R, Bregni M, Erikson J, Patterson D, Gallo RC, Croce CM. Human c-myc onc gene is located on the region of chromosome 8 that is translocated in Burkitt lymphoma cells. Proc Natl Acad Sci U S A. 1982;79(24):7824–7.CrossRefGoogle Scholar
  17. 17.
    Basso K, Frascella E, Zanesco L, Rosolen A. Improved long-distance polymerase chain reaction for the detection of t(8;14)(q24;q32) in Burkitt’s lymphomas. Am J Pathol. 1999;155(5):1479–85.  https://doi.org/10.1016/S0002-9440(10)65463-6.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Akasaka T, Muramatsu M, Ohno H, Miura I, Tatsumi E, Fukuhara S, Mori T, Okuma M. Application of long-distance polymerase chain reaction to detection of junctional sequences created by chromosomal translocation in mature B-cell neoplasms. Blood. 1996;88(3):985–94.PubMedGoogle Scholar
  19. 19.
    Lovisa F, Mussolin L, Corral L, Pillon M, Cazzaniga G, Biondi A, Rosolen A. IGH and IGK gene rearrangements as PCR targets for pediatric Burkitt’s lymphoma and mature B-ALL MRD analysis. Lab Investig. 2009;89(10):1182–6.  https://doi.org/10.1038/labinvest.2009.81.CrossRefPubMedGoogle Scholar
  20. 20.
    van Dongen JJ, Langerak AW, Bruggemann M, Evans PA, Hummel M, Lavender FL, Delabesse E, Davi F, Schuuring E, Garcia-Sanz R, van Krieken JH, Droese J, Gonzalez D, Bastard C, White HE, Spaargaren M, Gonzalez M, Parreira A, Smith JL, Morgan GJ, Kneba M, Macintyre EA. Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: report of the BIOMED-2 Concerted Action BMH4-CT98-3936. Leukemia. 2003;17(12):2257–317.  https://doi.org/10.1038/sj.leu.2403202.CrossRefPubMedGoogle Scholar
  21. 21.
    Agsalda M, Kusao I, Troelstrup D, Shiramizu B. Screening for residual disease in pediatric burkitt lymphoma using consensus primer pools. Adv Hematol. 2009;2009:412163.  https://doi.org/10.1155/2009/412163.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Shiramizu B, Goldman S, Smith L, Agsalda-Garcia M, Galardy P, Perkins SL, Frazer JK, Sanger W, Anderson JR, Gross TG, Weinstein H, Harrison L, Barth MJ, Mussolin L, Cairo MS. Impact of persistent minimal residual disease post-consolidation therapy in children and adolescents with advanced Burkitt leukaemia: a Children’s Oncology Group Pilot Study Report. Br J Haematol. 2015;170(3):367–71.  https://doi.org/10.1111/bjh.13443.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Damm-Welk C, Klapper W, Oschlies I, Gesk S, Rottgers S, Bradtke J, Siebert R, Reiter A, Woessmann W. Distribution of NPM1-ALK and X-ALK fusion transcripts in paediatric anaplastic large cell lymphoma: a molecular-histological correlation. Br J Haematol. 2009;146(3):306–9.CrossRefGoogle Scholar
  24. 24.
    Lamant L, Meggetto F, al Saati T, Brugieres L, de Paillerets BB, Dastugue N, Bernheim A, Rubie H, Terrier-Lacombe MJ, Robert A, Rigal F, Schlaifer D, Shiuta M, Mori S, Delsol G. High incidence of the t(2;5)(p23;q35) translocation in anaplastic large cell lymphoma and its lack of detection in Hodgkin’s disease. Comparison of cytogenetic analysis, reverse transcriptase-polymerase chain reaction, and P-80 immunostaining. Blood. 1996;87(1):284–91.PubMedGoogle Scholar
  25. 25.
    Perkins SL, Pickering D, Lowe EJ, Zwick D, Abromowitch M, Davenport G, Cairo MS, Sanger WG. Childhood anaplastic large cell lymphoma has a high incidence of ALK gene rearrangement as determined by immunohistochemical staining and fluorescent in situ hybridisation: a genetic and pathological correlation. Br J Haematol. 2005;131(5):624–7.CrossRefGoogle Scholar
  26. 26.
    Hernandez L, Pinyol M, Hernandez S, Bea S, Pulford K, Rosenwald A, Lamant L, Falini B, Ott G, Mason DY, Delsol G, Campo E. TRK-fused gene (TFG) is a new partner of ALK in anaplastic large cell lymphoma producing two structurally different TFG-ALK translocations. Blood. 1999;94(9):3265–8.PubMedGoogle Scholar
  27. 27.
    Lamant L, Dastugue N, Pulford K, Delsol G, Mariame B. A new fusion gene TPM3-ALK in anaplastic large cell lymphoma created by a (1;2)(q25;p23) translocation. Blood. 1999;93(9):3088–95.PubMedGoogle Scholar
  28. 28.
    Ma Z, Cools J, Marynen P, Cui X, Siebert R, Gesk S, Schlegelberger B, Peeters B, De Wolf-Peeters C, Wlodarska I, Morris SW. Inv(2)(p23q35) in anaplastic large-cell lymphoma induces constitutive anaplastic lymphoma kinase (ALK) tyrosine kinase activation by fusion to ATIC, an enzyme involved in purine nucleotide biosynthesis. Blood. 2000;95(6):2144–9.PubMedGoogle Scholar
  29. 29.
    Meech SJ, McGavran L, Odom LF, Liang X, Meltesen L, Gump J, Wei Q, Carlsen S, Hunger SP. Unusual childhood extramedullary hematologic malignancy with natural killer cell properties that contains tropomyosin 4--anaplastic lymphoma kinase gene fusion. Blood. 2001;98(4):1209–16.CrossRefGoogle Scholar
  30. 30.
    Tort F, Pinyol M, Pulford K, Roncador G, Hernandez L, Nayach I, Kluin-Nelemans HC, Kluin P, Touriol C, Delsol G, Mason D, Campo E. Molecular characterization of a new ALK translocation involving moesin (MSN-ALK) in anaplastic large cell lymphoma. Lab Investig. 2001;81(3):419–26.CrossRefGoogle Scholar
  31. 31.
    Touriol C, Greenland C, Lamant L, Pulford K, Bernard F, Rousset T, Mason DY, Delsol G. Further demonstration of the diversity of chromosomal changes involving 2p23 in ALK-positive lymphoma: 2 cases expressing ALK kinase fused to CLTCL (clathrin chain polypeptide-like). Blood. 2000;95(10):3204–7.PubMedGoogle Scholar
  32. 32.
    Damm-Welk C, Busch K, Burkhardt B, Schieferstein J, Viehmann S, Oschlies I, Klapper W, Zimmermann M, Harbott J, Reiter A, Woessmann W. Prognostic significance of circulating tumor cells in bone marrow or peripheral blood as detected by qualitative and quantitative PCR in pediatric NPM-ALK-positive anaplastic large-cell lymphoma. Blood. 2007;110(2):670–7.CrossRefGoogle Scholar
  33. 33.
    Downing JR, Shurtleff SA, Zielenska M, Curcio-Brint AM, Behm FG, Head DR, Sandlund JT, Weisenburger DD, Kossakowska AE, Thorner P. Molecular detection of the (2;5) translocation of non-Hodgkin’s lymphoma by reverse transcriptase-polymerase chain reaction. Blood. 1995;85(12):3416–22.Google Scholar
  34. 34.
    Mussolin L, Pillon M, d’Amore ES, Santoro N, Lombardi A, Fagioli F, Zanesco L, Rosolen A. Prevalence and clinical implications of bone marrow involvement in pediatric anaplastic large cell lymphoma. Leukemia. 2005;19(9):1643–7.CrossRefGoogle Scholar
  35. 35.
    Damm-Welk C, Schieferstein J, Schwalm S, Reiter A, Woessmann W. Flow cytometric detection of circulating tumour cells in nucleophosmin/anaplastic lymphoma kinase-positive anaplastic large cell lymphoma: comparison with quantitative polymerase chain reaction. Br J Haematol. 2007;138(4):459–66.CrossRefGoogle Scholar
  36. 36.
    Burkhardt B. Paediatric lymphoblastic T-cell leukaemia and lymphoma: one or two diseases? Br J Haematol. 2010;149(5):653–68.  https://doi.org/10.1111/j.1365-2141.2009.08006.x.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Stark B, Avigad S, Luria D, Manor S, Reshef-Ronen T, Avrahami G, Yaniv I. Bone marrow minimal disseminated disease (MDD) and minimal residual disease (MRD) in childhood T-cell lymphoblastic lymphoma stage III, detected by flow cytometry (FC) and real-time quantitative polymerase chain reaction (RQ-PCR). Pediatr Blood Cancer. 2009;52(1):20–5.  https://doi.org/10.1002/pbc.21823.CrossRefPubMedGoogle Scholar
  38. 38.
    Coustan-Smith E, Sandlund JT, Perkins SL, Chen H, Chang M, Abromowitch M, Campana D. Minimal disseminated disease in childhood T-cell lymphoblastic lymphoma: a report from the children’s oncology group. J Clin Oncol. 2009;27(21):3533–9.  https://doi.org/10.1200/JCO.2008.21.1318.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Mussolin L, Buldini B, Lovisa F, Carraro E, Disaro S, Lo Nigro L, d’Amore ES, Pillon M, Basso G. Detection and role of minimal disseminated disease in children with lymphoblastic lymphoma: the AIEOP experience. Pediatr Blood Cancer. 2015;62(11):1906–13.  https://doi.org/10.1002/pbc.25607.CrossRefPubMedGoogle Scholar
  40. 40.
    Dworzak MN, Gaipa G, Ratei R, Veltroni M, Schumich A, Maglia O, Karawajew L, Benetello A, Potschger U, Husak Z, Gadner H, Biondi A, Ludwig WD, Basso G. Standardization of flow cytometric minimal residual disease evaluation in acute lymphoblastic leukemia: multicentric assessment is feasible. Cytometry B Clin Cytom. 2008;74(6):331–40.  https://doi.org/10.1002/cyto.b.20430.CrossRefPubMedGoogle Scholar
  41. 41.
    Burkhardt B, Woessmann W, Zimmermann M, Kontny U, Vormoor J, Doerffel W, Mann G, Henze G, Niggli F, Ludwig WD, Janssen D, Riehm H, Schrappe M, Reiter A. Impact of cranial radiotherapy on central nervous system prophylaxis in children and adolescents with central nervous system-negative stage III or IV lymphoblastic lymphoma. J Clin Oncol. 2006;24(3):491–9.  https://doi.org/10.1200/JCO.2005.02.2707.CrossRefPubMedGoogle Scholar
  42. 42.
    Reiter A, Schrappe M, Ludwig WD, Tiemann M, Parwaresch R, Zimmermann M, Schirg E, Henze G, Schellong G, Gadner H, Riehm H. Intensive ALL-type therapy without local radiotherapy provides a 90% event-free survival for children with T-cell lymphoblastic lymphoma: a BFM group report. Blood. 2000;95(2):416–21.PubMedGoogle Scholar
  43. 43.
    Balbach ST, Makarova O, Bonn BR, Zimmermann M, Rohde M, Oschlies I, Klapper W, Rossig C, Burkhardt B. Proposal of a genetic classifier for risk group stratification in pediatric T-cell lymphoblastic lymphoma reveals differences from adult T-cell lymphoblastic leukemia. Leukemia. 2016;30(4):970–3.  https://doi.org/10.1038/leu.2015.203.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Bonn BR, Rohde M, Zimmermann M, Krieger D, Oschlies I, Niggli F, Wrobel G, Attarbaschi A, Escherich G, Klapper W, Reiter A, Burkhardt B. Incidence and prognostic relevance of genetic variations in T-cell lymphoblastic lymphoma in childhood and adolescence. Blood. 2013;121(16):3153–60.  https://doi.org/10.1182/blood-2012-12-474148.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Callens C, Baleydier F, Lengline E, Ben Abdelali R, Petit A, Villarese P, Cieslak A, Minard-Colin V, Rullier A, Moreau A, Baruchel A, Schmitt C, Asnafi V, Bertrand Y, Macintyre E. Clinical impact of NOTCH1 and/or FBXW7 mutations, FLASH deletion, and TCR status in pediatric T-cell lymphoblastic lymphoma. J Clin Oncol. 2012;30(16):1966–73.  https://doi.org/10.1200/JCO.2011.39.7661.CrossRefGoogle Scholar
  46. 46.
    Mussolin L, Basso K, Pillon M, d’Amore ES, Lombardi A, Luzzatto L, Zanesco L, Rosolen A. Prospective analysis of minimal bone marrow infiltration in pediatric Burkitt’s lymphomas by long-distance polymerase chain reaction for t(8;14)(q24;q32). Leukemia. 2003;17(3):585–9.CrossRefGoogle Scholar
  47. 47.
    Mussolin L, Pillon M, d’Amore ES, Conter V, Piglione M, Lo Nigro L, Garaventa A, Buffardi S, Arico M, Rosolen A. Minimal disseminated disease in high-risk Burkitt’s lymphoma identifies patients with different prognosis. J Clin Oncol. 2011;29(13):1779–84.CrossRefGoogle Scholar
  48. 48.
    Busch K, Borkhardt A, Wossmann W, Reiter A, Harbott J. Combined polymerase chain reaction methods to detect c-myc/IgH rearrangement in childhood Burkitt’s lymphoma for minimal residual disease analysis. Haematologica. 2004;89(7):818–25.PubMedGoogle Scholar
  49. 49.
    Cazzaniga G, Biondi A. Molecular monitoring of childhood acute lymphoblastic leukemia using antigen receptor gene rearrangements and quantitative polymerase chain reaction technology. Haematologica. 2005;90(3):382–90.PubMedGoogle Scholar
  50. 50.
    Mussolin L, Pillon M, Conter V, Piglione M, Lo Nigro L, Pierani P, Micalizzi C, Buffardi S, Basso G, Zanesco L, Rosolen A. Prognostic role of minimal residual disease in mature B-cell acute lymphoblastic leukemia of childhood. J Clin Oncol. 2007;25(33):5254–61.CrossRefGoogle Scholar
  51. 51.
    Pillon M, Mussolin L, Carraro E, Conter V, Arico M, Vinti L, Garaventa A, Piglione M, Buffardi S, Sala A, Santoro N, Lo Nigro L, Mura R, Tondo A, Casale F, Farruggia P, Pierani P, Cesaro S, d’Amore ES, Basso G. Detection of prognostic factors in children and adolescents with Burkitt and Diffuse Large B-Cell Lymphoma treated with the AIEOP LNH-97 protocol. Br J Haematol. 2016;175(3):467–75.  https://doi.org/10.1111/bjh.14240.CrossRefGoogle Scholar
  52. 52.
    Chiarle R, Voena C, Ambrogio C, Piva R, Inghirami G. The anaplastic lymphoma kinase in the pathogenesis of cancer. Nat Rev Cancer. 2008;8(1):11–23.CrossRefGoogle Scholar
  53. 53.
    Pulford K, Lamant L, Espinos E, Jiang Q, Xue L, Turturro F, Delsol G, Morris SW. The emerging normal and disease-related roles of anaplastic lymphoma kinase. Cell Mol Life Sci. 2004;61(23):2939–53.CrossRefGoogle Scholar
  54. 54.
    Damm-Welk C, Mussolin L, Zimmermann M, Pillon M, Klapper W, Oschlies I, d’Amore ES, Reiter A, Woessmann W, Rosolen A. Early assessment of minimal residual disease identifies patients at very high relapse risk in NPM-ALK-positive anaplastic large-cell lymphoma. Blood. 2014;123(3):334–7.CrossRefGoogle Scholar
  55. 55.
    Mussolin L, mm-Welk C, Pillon M, Zimmermann M, Franceschetto G, Pulford K, Reiter A, Rosolen A, Woessmann W. Use of minimal disseminated disease and immunity to NPM-ALK antigen to stratify ALK-positive ALCL patients with different prognosis. Leukemia. 2013;27(2):416–22.CrossRefGoogle Scholar
  56. 56.
    Damm-Welk C, Yamashita Y, Bench A, Turner S, Lamant L, Verge V, Tosato E, Schieferstein J, Mussolin L. Quality control of standardized methods for NPM-ALK RT-PCR and anti-ALK-antibody-measurement for anaplastic large cell lymphoma -a report of the EICNHL reference laboratory group. Br J Haematol. 2015;171(S1):56.Google Scholar
  57. 57.
    Iijima-Yamashita Y, Mori T, Nakazawa A, Fukano R, Takimoto T, Tsurusawa M, Kobayashi R, Horibe K. Prognostic impact of minimal disseminated disease and immune response to NPM-ALK in Japanese children with ALK-positive anaplastic large cell lymphoma. Int J Hematol. 2018;107(2):244–50.  https://doi.org/10.1007/s12185-017-2338-6.CrossRefPubMedGoogle Scholar
  58. 58.
    Gambacorti-Passerini C, Mussolin L, Brugieres L. Abrupt relapse of ALK-positive lymphoma after discontinuation of crizotinib. N Engl J Med. 2016;374(1):95–6.  https://doi.org/10.1056/NEJMc1511045.CrossRefPubMedGoogle Scholar
  59. 59.
    Hebart H, Lang P, Woessmann W. Nivolumab for refractory anaplastic large cell lymphoma: a case report. Ann Intern Med. 2016;165(8):607–8.  https://doi.org/10.7326/L16-0037.CrossRefPubMedGoogle Scholar
  60. 60.
    Kalinova M, Krskova L, Brizova H, Kabickova E, Kepak T, Kodet R. Quantitative PCR detection of NPM/ALK fusion gene and CD30 gene expression in patients with anaplastic large cell lymphoma--residual disease monitoring and a correlation with the disease status. Leuk Res. 2008;32(1):25–32.  https://doi.org/10.1016/j.leukres.2007.01.002.CrossRefPubMedGoogle Scholar
  61. 61.
    Krumbholz M, Woessmann W, Zierk J, Seniuk D, Ceppi P, Zimmermann M, Singh VK, Metzler M, Damm-Welk C. Characterization and diagnostic application of genomic NPM-ALK fusion sequences in anaplastic large-cell lymphoma. Oncotarget. 2018;9:26543–55.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Lara Mussolin
    • 1
    • 2
  • Christine Damm-Welk
    • 3
  • Wilhelm Woessmann
    • 3
    Email author
  1. 1.Clinic of Pediatric Onco-Hematology, Department of Women’s and Children’s HealthUniversity of PadovaPadovaItaly
  2. 2.Istituto di Ricerca Pediatrica Città della SperanzaPadovaItaly
  3. 3.University Hospital Hamburg-Eppendorf, Pediatric Hematology and OncologyHamburgGermany

Personalised recommendations