Advertisement

Transitioning from Preclinical to Clinical Drug Development

  • Geoffrey A. Walford
  • S. Aubrey StochEmail author
Chapter

Abstract

The transition from preclinical to clinical drug development provides a unique opportunity to probe the safety, tolerability, and potential efficacy of a new drug candidate. Prior to introducing a novel drug candidate into humans, sufficient preclinical evidence should indicate that it is well-tolerated and likely to benefit patients in a meaningful way. These assumptions are tested initially in the first-in-human and other early clinical development studies as the drug profile is refined and compared against an idealized set of benchmarks necessary for clinical utility and commercial success. Thus, the transition to clinical development plays an important role in vetting those drugs most likely to establish themselves as new therapies and for which additional resources of development should be allocated to confirm safety and benefit during chronic dosing in a broad patient population. Examples of successful drug development underscore the inclusion of pharmacokinetic, pharmacodynamic, and target-engagement biomarker assessment to expedite the transition through to proof of concept. Challenges frequently arise in drug development and necessitate modifications in the development approach to navigate emergent findings both in the preclinical and clinical setting.

Keywords

Cardiometabolic drug Preclinical development Early clinical development Pharmacokinetics Pharmacodynamics Biomarker Safety Efficacy First-in-human study 

References

  1. 1.
    Moller DE. Metabolic disease drug discovery- “hitting the target” is easier said than done. Cell Metab. 2012;15(1):19–24.PubMedCrossRefGoogle Scholar
  2. 2.
    DiMasi JA, Grabowski HG, Hansen RW. Innovation in the pharmaceutical industry: new estimates of r&d costs. J Health Econ. 2016;47:20–33.PubMedCrossRefGoogle Scholar
  3. 3.
    Posner J. Exploratory development. In: Griffin JP, editor. The textbook of pharmaceutical medicine. 6th ed: Blackwell Publishing; Oxford. 2009. p. 137–66.Google Scholar
  4. 4.
    European Agency for the Evaluation of Medicinal Products. Ich tripartite guideline. Dose-response information to support drug registration. Cpmp/ich/378/95; 1994.Google Scholar
  5. 5.
    Schmidt R. Dose-finding studies in clinical drug development. Eur J Clin Pharmacol. 1988;34(1):15–9.PubMedCrossRefGoogle Scholar
  6. 6.
    Chen B, Dong JQ, Pan WJ, Ruiz A. Pharmacokinetics/pharmacodynamics model-supported early drug development. Curr Pharm Biotechnol. 2012;13(7):1360–75.PubMedCrossRefGoogle Scholar
  7. 7.
    Meibohm B, Derendorf H. Pharmacokinetic/pharmacodynamic studies in drug product development. J Pharm Sci. 2002;91(1):18–31.PubMedCrossRefGoogle Scholar
  8. 8.
    Workman P. How much gets there and what does it do?: the need for better pharmacokinetic and pharmacodynamic endpoints in contemporary drug discovery and development. Curr Pharm Des. 2003;9(11):891–902.PubMedCrossRefGoogle Scholar
  9. 9.
    World Health Organization Fact Sheet. Top 10 causes of death globally 2015. [cited 1 February 2018]. Available from: http://www.who.int/mediacentre/factsheets/fs310/en/.
  10. 10.
    Jaworski K, Jankowski P, Kosior DA. Pcsk9 inhibitors – from discovery of a single mutation to a groundbreaking therapy of lipid disorders in one decade. Arch Med Sci. 2017;13(4):914–29.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Navarese EP, Kolodziejczak M, Schulze V, Gurbel PA, Tantry U, Lin Y, et al. Effects of proprotein convertase subtilisin/kexin type 9 antibodies in adults with hypercholesterolemia: a systematic review and meta-analysis. Ann Intern Med. 2015;163(1):40–51.PubMedCrossRefGoogle Scholar
  12. 12.
    Lipinski MJ, Benedetto U, Escarcega RO, Biondi-Zoccai G, Lhermusier T, Baker NC, et al. The impact of proprotein convertase subtilisin-kexin type 9 serine protease inhibitors on lipid levels and outcomes in patients with primary hypercholesterolaemia: a network meta-analysis. Eur Heart J. 2016;37(6):536–45.PubMedCrossRefGoogle Scholar
  13. 13.
    Abifadel M, Varret M, Rabes JP, Allard D, Ouguerram K, Devillers M, et al. Mutations in pcsk9 cause autosomal dominant hypercholesterolemia. Nat Genet. 2003;34(2):154–6.PubMedCrossRefGoogle Scholar
  14. 14.
    Maxwell KN, Breslow JL. Adenoviral-mediated expression of pcsk9 in mice results in a low-density lipoprotein receptor knockout phenotype. Proc Natl Acad Sci U S A. 2004;101(18):7100–5.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Cohen JC, Boerwinkle E, Mosley TH Jr, Hobbs HH. Sequence variations in pcsk9, low ldl, and protection against coronary heart disease. N Engl J Med. 2006;354(12):1264–72.PubMedCrossRefGoogle Scholar
  16. 16.
    Cohen J, Pertsemlidis A, Kotowski IK, Graham R, Garcia CK, Hobbs HH. Low ldl cholesterol in individuals of african descent resulting from frequent nonsense mutations in pcsk9. Nat Genet. 2005;37(2):161–5.PubMedCrossRefGoogle Scholar
  17. 17.
    Rashid S, Curtis DE, Garuti R, Anderson NN, Bashmakov Y, Ho YK, et al. Decreased plasma cholesterol and hypersensitivity to statins in mice lacking pcsk9. Proc Natl Acad Sci U S A. 2005;102(15):5374–9.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Seidah NG, Awan Z, Chretien M, Mbikay M. Pcsk9: a key modulator of cardiovascular health. Circ Res. 2014;114(6):1022–36.PubMedCrossRefGoogle Scholar
  19. 19.
    Cunningham D, Danley DE, Geoghegan KF, Griffor MC, Hawkins JL, Subashi TA, et al. Structural and biophysical studies of pcsk9 and its mutants linked to familial hypercholesterolemia. Nat Struct Mol Biol. 2007;14(5):413–9.PubMedCrossRefGoogle Scholar
  20. 20.
    Horton JD, Cohen JC, Hobbs HH. Pcsk9: a convertase that coordinates ldl catabolism. J Lipid Res. 2009;50(Suppl):S172–7.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Al-Mashhadi RH, Sorensen CB, Kragh PM, Christoffersen C, Mortensen MB, Tolbod LP, et al. Familial hypercholesterolemia and atherosclerosis in cloned minipigs created by DNA transposition of a human pcsk9 gain-of-function mutant. Sci Transl Med. 2013;5(166):166ra1.PubMedCrossRefGoogle Scholar
  22. 22.
    Boekholdt SM, Arsenault BJ, Mora S, Pedersen TR, LaRosa JC, Nestel PJ, et al. Association of ldl cholesterol, non-hdl cholesterol, and apolipoprotein b levels with risk of cardiovascular events among patients treated with statins: a meta-analysis. JAMA. 2012;307(12):1302–9.PubMedCrossRefGoogle Scholar
  23. 23.
    Sniderman AD, Williams K, Contois JH, Monroe HM, McQueen MJ, de Graaf J, et al. A meta-analysis of low-density lipoprotein cholesterol, non-high-density lipoprotein cholesterol, and apolipoprotein b as markers of cardiovascular risk. Circ Cardiovasc Qual Outcomes. 2011;4(3):337–45.PubMedCrossRefGoogle Scholar
  24. 24.
    Kotseva K, Wood D, De Bacquer D, De Backer G, Ryden L, Jennings C, et al. Euroaspire iv: a European Society of Cardiology survey on the lifestyle, risk factor and therapeutic management of coronary patients from 24 European countries. Eur J Prev Cardiol. 2016;23(6):636–48.PubMedCrossRefGoogle Scholar
  25. 25.
    Chiang CE, Ferrieres J, Gotcheva NN, Raal FJ, Shehab A, Sung J, et al. Suboptimal control of lipid levels: results from 29 countries participating in the centralized pan-regional surveys on the undertreatment of hypercholesterolaemia (cepheus). J Atheroscler Thromb. 2016;23(5):567–87.PubMedCrossRefGoogle Scholar
  26. 26.
    Avis HJ, Hutten BA, Gagne C, Langslet G, McCrindle BW, Wiegman A, et al. Efficacy and safety of rosuvastatin therapy for children with familial hypercholesterolemia. J Am Coll Cardiol. 2010;55(11):1121–6.PubMedCrossRefGoogle Scholar
  27. 27.
    Cannon CP, Blazing MA, Giugliano RP, McCagg A, White JA, Theroux P, et al. Ezetimibe added to statin therapy after acute coronary syndromes. N Engl J Med. 2015;372(25):2387–97.PubMedCrossRefGoogle Scholar
  28. 28.
    Needham M, Mastaglia FL. Statin myotoxicity: a review of genetic susceptibility factors. Neuromuscul Disord. 2014;24(1):4–15.PubMedCrossRefGoogle Scholar
  29. 29.
    Aschner P, Kipnes MS, Lunceford JK, Sanchez M, Mickel C, Williams-Herman DE. Effect of the dipeptidyl peptidase-4 inhibitor sitagliptin as monotherapy on glycemic control in patients with type 2 diabetes. Diabetes Care. 2006;29(12):2632–7.PubMedCrossRefGoogle Scholar
  30. 30.
    Raz I, Hanefeld M, Xu L, Caria C, Williams-Herman D, Khatami H. Efficacy and safety of the dipeptidyl peptidase-4 inhibitor sitagliptin as monotherapy in patients with type 2 diabetes mellitus. Diabetologia. 2006;49(11):2564–71.PubMedCrossRefGoogle Scholar
  31. 31.
    Creutzfeldt W. The incretin concept today. Diabetologia. 1979;16(2):75–85.PubMedCrossRefGoogle Scholar
  32. 32.
    Drucker DJ. Biological actions and therapeutic potential of the glucagon-like peptides. Gastroenterology. 2002;122(2):531–44.PubMedCrossRefGoogle Scholar
  33. 33.
    Drucker DJ. The biology of incretin hormones. Cell Metab. 2006;3(3):153–65.PubMedCrossRefGoogle Scholar
  34. 34.
    Drucker DJ, Nauck MA. The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet. 2006;368(9548):1696–705.PubMedCrossRefGoogle Scholar
  35. 35.
    Zander M, Madsbad S, Madsen JL, Holst JJ. Effect of 6-week course of glucagon-like peptide 1 on glycaemic control, insulin sensitivity, and beta-cell function in type 2 diabetes: a parallel-group study. Lancet. 2002;359(9309):824–30.PubMedCrossRefGoogle Scholar
  36. 36.
    Rolin B, Larsen MO, Gotfredsen CF, Deacon CF, Carr RD, Wilken M, et al. The long-acting glp-1 derivative nn2211 ameliorates glycemia and increases beta-cell mass in diabetic mice. Am J Physiol Endocrinol Metab. 2002;283(4):E745–52.PubMedCrossRefGoogle Scholar
  37. 37.
    Marguet D, Baggio L, Kobayashi T, Bernard AM, Pierres M, Nielsen PF, et al. Enhanced insulin secretion and improved glucose tolerance in mice lacking cd26. Proc Natl Acad Sci U S A. 2000;97(12):6874–9.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Lankas GR, Leiting B, Roy RS, Eiermann GJ, Beconi MG, Biftu T, et al. Dipeptidyl peptidase iv inhibition for the treatment of type 2 diabetes: potential importance of selectivity over dipeptidyl peptidases 8 and 9. Diabetes. 2005;54(10):2988–94.PubMedCrossRefGoogle Scholar
  39. 39.
    Kim D, Wang L, Beconi M, Eiermann GJ, Fisher MH, He H, et al. (2r)-4-oxo-4-[3-(trifluoromethyl)-5,6-dihydro[1,2,4]triazolo[4,3-a]pyrazin-7(8h)- yl]-1-(2,4,5-trifluorophenyl)butan-2-amine: a potent, orally active dipeptidyl peptidase iv inhibitor for the treatment of type 2 diabetes. J Med Chem. 2005;48(1):141–51.PubMedCrossRefGoogle Scholar
  40. 40.
    Bergman AJ, Stevens C, Zhou Y, Yi B, Laethem M, De Smet M, et al. Pharmacokinetic and pharmacodynamic properties of multiple oral doses of sitagliptin, a dipeptidyl peptidase-iv inhibitor: a double-blind, randomized, placebo-controlled study in healthy male volunteers. Clin Ther. 2006;28(1):55–72.PubMedCrossRefGoogle Scholar
  41. 41.
    Scott R, Wu M, Sanchez M, Stein P. Efficacy and tolerability of the dipeptidyl peptidase-4 inhibitor sitagliptin as monotherapy over 12 weeks in patients with type 2 diabetes. Int J Clin Pract. 2007;61(1):171–80.PubMedCrossRefGoogle Scholar
  42. 42.
    Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care. 2004;27(5):1047–53.PubMedCrossRefGoogle Scholar
  43. 43.
    Cheung BM, Ong KL, Cherny SS, Sham PC, Tso AW, Lam KS. Diabetes prevalence and therapeutic target achievement in the United States, 1999 to 2006. Am J Med. 2009;122(5):443–53.PubMedCrossRefGoogle Scholar
  44. 44.
    Erondu N, Gantz I, Musser B, Suryawanshi S, Mallick M, Addy C, et al. Neuropeptide y5 receptor antagonism does not induce clinically meaningful weight loss in overweight and obese adults. Cell Metab. 2006;4(4):275–82.PubMedCrossRefGoogle Scholar
  45. 45.
    Wagner JA. Strategic approach to fit-for-purpose biomarkers in drug development. Annu Rev Pharmacol Toxicol. 2008;48:631–51.PubMedCrossRefGoogle Scholar
  46. 46.
    Clark JT, Kalra PS, Crowley WR, Kalra SP. Neuropeptide y and human pancreatic polypeptide stimulate feeding behavior in rats. Endocrinology. 1984;115(1):427–9.PubMedCrossRefGoogle Scholar
  47. 47.
    Mullins D, Kirby D, Hwa J, Guzzi M, Rivier J, Parker E. Identification of potent and selective neuropeptide y y(1) receptor agonists with orexigenic activity in vivo. Mol Pharmacol. 2001;60(3):534–40.PubMedGoogle Scholar
  48. 48.
    Parker EM, Balasubramaniam A, Guzzi M, Mullins DE, Salisbury BG, Sheriff S, et al. [d-trp(34)] neuropeptide y is a potent and selective neuropeptide y y(5) receptor agonist with dramatic effects on food intake. Peptides. 2000;21(3):393–9.PubMedCrossRefGoogle Scholar
  49. 49.
    Cabrele C, Langer M, Bader R, Wieland HA, Doods HN, Zerbe O, et al. The first selective agonist for the neuropeptide yy5 receptor increases food intake in rats. J Biol Chem. 2000;275(46):36043–8.PubMedCrossRefGoogle Scholar
  50. 50.
    Hu Y, Bloomquist BT, Cornfield LJ, DeCarr LB, Flores-Riveros JR, Friedman L, et al. Identification of a novel hypothalamic neuropeptide y receptor associated with feeding behavior. J Biol Chem. 1996;271(42):26315–9.PubMedCrossRefGoogle Scholar
  51. 51.
    Gerald C, Walker MW, Criscione L, Gustafson EL, Batzl-Hartmann C, Smith KE, et al. A receptor subtype involved in neuropeptide-y-induced food intake. Nature. 1996;382(6587):168–71.PubMedCrossRefGoogle Scholar
  52. 52.
    Stanley BG, Magdalin W, Seirafi A, Nguyen MM, Leibowitz SF. Evidence for neuropeptide y mediation of eating produced by food deprivation and for a variant of the y1 receptor mediating this peptide’s effect. Peptides. 1992;13(3):581–7.PubMedCrossRefGoogle Scholar
  53. 53.
    Zarjevski N, Cusin I, Vettor R, Rohner-Jeanrenaud F, Jeanrenaud B. Chronic intracerebroventricular neuropeptide-y administration to normal rats mimics hormonal and metabolic changes of obesity. Endocrinology. 1993;133(4):1753–8.PubMedCrossRefGoogle Scholar
  54. 54.
    Lin EJ, Sainsbury A, Lee NJ, Boey D, Couzens M, Enriquez R, et al. Combined deletion of y1, y2, and y4 receptors prevents hypothalamic neuropeptide y overexpression-induced hyperinsulinemia despite persistence of hyperphagia and obesity. Endocrinology. 2006;147(11):5094–101.PubMedCrossRefGoogle Scholar
  55. 55.
    Stanley BG, Kyrkouli SE, Lampert S, Leibowitz SF. Neuropeptide y chronically injected into the hypothalamus: a powerful neurochemical inducer of hyperphagia and obesity. Peptides. 1986;7(6):1189–92.PubMedCrossRefGoogle Scholar
  56. 56.
    Dube MG, Xu B, Crowley WR, Kalra PS, Kalra SP. Evidence that neuropeptide y is a physiological signal for normal food intake. Brain Res. 1994;646(2):341–4.PubMedCrossRefGoogle Scholar
  57. 57.
    Schwartz MW, Woods SC, Porte D Jr, Seeley RJ, Baskin DG. Central nervous system control of food intake. Nature. 2000;404(6778):661–71.PubMedCrossRefGoogle Scholar
  58. 58.
    Kalra SP, Dube MG, Pu S, Xu B, Horvath TL, Kalra PS. Interacting appetite-regulating pathways in the hypothalamic regulation of body weight. Endocr Rev. 1999;20(1):68–100.PubMedGoogle Scholar
  59. 59.
    Marsh DJ, Hollopeter G, Kafer KE, Palmiter RD. Role of the y5 neuropeptide y receptor in feeding and obesity. Nat Med. 1998;4(6):718–21.PubMedCrossRefGoogle Scholar
  60. 60.
    Parker E, Van Heek M, Stamford A. Neuropeptide y receptors as targets for anti-obesity drug development: perspective and current status. Eur J Pharmacol. 2002;440(2-3):173–87.PubMedCrossRefGoogle Scholar
  61. 61.
    Thomas DM, Ivanescu AE, Martin CK, Heymsfield SB, Marshall K, Bodrato VE, et al. Predicting successful long-term weight loss from short-term weight-loss outcomes: new insights from a dynamic energy balance model (the pounds lost study). Am J Clin Nutr. 2015;101(3):449–54.PubMedCrossRefGoogle Scholar
  62. 62.
    Standards of medical care in diabetes-2017. Diabetes Care. 2017;40(Supplement 1): S64–S74.Google Scholar
  63. 63.
    Levy G. The case for preclinical pharmacodynamics. In: Yacobi ASJ, Shah VP, Benet LZ, editors. The integration of pharmacokinetics, pharmacodynamics and toxicokinetics in rational drug development. New York: Plenum Press; 1993. p. 7–13.CrossRefGoogle Scholar
  64. 64.
    Azuma H, Paulk N, Ranade A, Dorrell C, Al-Dhalimy M, Ellis E, et al. Robust expansion of human hepatocytes in fah−/−/rag2−/−/il2rg−/− mice. Nat Biotechnol. 2007;25(8):903–10.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Tateno C, Yoshizane Y, Saito N, Kataoka M, Utoh R, Yamasaki C, et al. Near completely humanized liver in mice shows human-type metabolic responses to drugs. Am J Pathol. 2004;165(3):901–12.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Yoshizato K, Tateno C. In vivo modeling of human liver for pharmacological study using humanized mouse. Expert Opin Drug Metab Toxicol. 2009;5(11):1435–46.PubMedCrossRefGoogle Scholar
  67. 67.
    Naritomi Y, Sanoh S, Ohta S. Chimeric mice with humanized liver: application in drug metabolism and pharmacokinetics studies for drug discovery. Drug Metab Pharmacokinet. 2018;33:31–9.PubMedCrossRefGoogle Scholar
  68. 68.
    Eisenhauer E. Preclinical data and requirements. In: Eisenhauer E, Twelves C, Buyse M, editors. Phase 1 cancer clinical trials. Oxford: Oxford University Press; 2006. p. 11–39.Google Scholar
  69. 69.
    European Medicines Agency. Guidelines on strategies to identify and mitigate risks for first-in-human clinical trials with investigational medicinal products. London: European Medicines Agency; 2017.Google Scholar
  70. 70.
    European Agency for the Evaluation of Medicinal Products. Ich topic s7 safety pharmacology studies for human pharmaceuticals. Cpmp/ich/539/00; 2001.Google Scholar
  71. 71.
    U.S. Department of Health and Human Services, Food and Drug Administration. Estimating the maximum safe starting dose in initial clinical trials for therapeutics in adult healthy volunteers; 2005.Google Scholar
  72. 72.
    Hirschfeld S. Clinical drug trials in children. In: Yaffe S, Aranda Y, editors. Neonatal and pediatric pharmacology. Philadelphia: Lippincott, Williams & Wilkins; 2004. p. 69–91.Google Scholar
  73. 73.
    Sams-Dodd F. Strategies to optimize the validity of disease models in the drug discovery process. Drug Discov Today. 2006;11(7-8):355–63.PubMedCrossRefGoogle Scholar
  74. 74.
    Bol CJ, Vogelaar JP, Tang JP, Mandema JW. Quanti®cation of pharmacodynamic interactions between dexmedetomidine and midazolam in the rat. J Pharmacol Exp Ther. 2000;294:347–55.PubMedGoogle Scholar
  75. 75.
    Libby P, Ridker PM, Hansson GK. Progress and challenges in translating the biology of atherosclerosis. Nature. 2011;473(7347):317–25.PubMedCrossRefGoogle Scholar
  76. 76.
    McCarthy MI. Genomics, type 2 diabetes, and obesity. N Engl J Med. 2010;363(24):2339–50.PubMedCrossRefGoogle Scholar
  77. 77.
    Blue JW, Colburn WA. Efficacy measures: surrogates or clinical outcomes? J Clin Pharmacol. 1996;36(9):767–70.PubMedCrossRefGoogle Scholar
  78. 78.
    Frank R, Hargreaves R. Clinical biomarkers in drug discovery and development. Nat Rev Drug Discov. 2003;2(7):566–80.PubMedCrossRefGoogle Scholar
  79. 79.
    U.S. Department of Health and Human Services, Food and Drug Administration. Guidance for industry. Exposure-response relationships: study design, data analysis, and regulatory applications. Rockville; 2003.Google Scholar
  80. 80.
    De Silva A, Salem V, Long CJ, Makwana A, Newbould RD, Rabiner EA, et al. The gut hormones pyy 3-36 and glp-1 7-36 amide reduce food intake and modulate brain activity in appetite centers in humans. Cell Metab. 2011;14(5):700–6.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Subbarayan S, Kipnes M. Sitagliptin: a review. Expert Opin Pharmacother. 2011;12(10):1613–22.PubMedCrossRefGoogle Scholar
  82. 82.
    Bally L, Thabit H, Kojzar H, Mader JK, Qerimi-Hyseni J, Hartnell S, et al. Day-and-night glycaemic control with closed-loop insulin delivery versus conventional insulin pump therapy in free-living adults with well controlled type 1 diabetes: an open-label, randomised, crossover study. Lancet Diabetes Endocrinol. 2017;5(4):261–70.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Haahr H, Heise T. A review of the pharmacological properties of insulin degludec and their clinical relevance. Clin Pharmacokinet. 2014;53(9):787–800.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Wysham C, Bhargava A, Chaykin L, de la Rosa R, Handelsman Y, Troelsen LN, et al. Effect of insulin degludec vs insulin glargine u100 on hypoglycemia in patients with type 2 diabetes: the switch 2 randomized clinical trial. JAMA. 2017;318(1):45–56.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Chou DH, Webber MJ, Tang BC, Lin AB, Thapa LS, Deng D, et al. Glucose-responsive insulin activity by covalent modification with aliphatic phenylboronic acid conjugates. Proc Natl Acad Sci U S A. 2015;112(8):2401–6.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Mudaliar S, Henry RR, Ciaraldi TP, Armstrong DA, Burke PM, Pettus JH, et al. Reduced peripheral activity leading to hepato-preferential action of basal insulin peglispro compared with insulin glargine in patients with type 1 diabetes. Diabetes Obes Metab. 2016;18(Suppl 2):17–24.PubMedCrossRefGoogle Scholar
  87. 87.
    Davies M, Pieber TR, Hartoft-Nielsen ML, Hansen OK, Jabbour S, Rosenstock J. Effect of oral semaglutide compared with placebo and subcutaneous semaglutide on glycemic control in patients with type 2 diabetes: a randomized clinical trial. JAMA. 2017;318(15):1460–70.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Overgaard RV, Ingwersen SH, Tornoe CW. Establishing good practices for exposure-response analysis of clinical endpoints in drug development. CPT Pharmacometrics Syst Pharmacol. 2015;4(10):565–75.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Espie P, Tytgat D, Sargentini-Maier ML, Poggesi I, Watelet JB. Physiologically based pharmacokinetics (pbpk). Drug Metab Rev. 2009;41(3):391–407.PubMedCrossRefGoogle Scholar
  90. 90.
    Meibohm B, Derendorf H. Basic concepts of pharmacokinetic/pharmacodynamic (pk/pd) modelling. Int J Clin Pharmacol Ther. 1997;35:401–13.PubMedGoogle Scholar
  91. 91.
    Drucker DJ. Never waste a good crisis: confronting reproducibility in translational research. Cell Metab. 2016;24(3):348–60.PubMedCrossRefGoogle Scholar
  92. 92.
    Attarwala H. Tgn1412: from discovery to disaster. J Young Pharm. 2010;2(3):332–6.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Mallet C, Dubray C, Duale C. Faah inhibitors in the limelight, but regrettably. Int J Clin Pharmacol Ther. 2016;54(7):498–501.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    European Agency for the Evaluation of Medicinal Products. Guideline on the investigation of drug interactions; 2012.Google Scholar
  95. 95.
    Sheiner LB. Learning versus confirming in clinical drug development. Clin Pharmacol Ther. 1997;61(3):275–91.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Merck & Co., Inc., MRLKenilworthUSA

Personalised recommendations