Advertisement

Glioblastoma Survival Prediction

  • Zeina A. ShboulEmail author
  • Mahbubul Alam
  • Lasitha Vidyaratne
  • Linmin Pei
  • Khan M. Iftekharuddin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11384)

Abstract

Glioblastoma is a high-grade invasive astrocytoma tumor. The highly invasive nature makes timely detection and characterization of the tumor critical for the survivability prediction of patients. This work proposes MRI- and clinical information-based automated pipeline that implements various state-of-the-art image processing, machine learning, and deep learning techniques to obtain robust tumor segmentation and patient survival estimation. We use 163 cases from the training dataset, and 28 cases from the validation dataset provided by the BraTS 2018 challenge for the evaluation of our model. We achieve an accuracy of 0.679 using the validation dataset and that of 0.519 for the test dataset.

Notes

Acknowledgements

This work was funded by NIBIB/NIH grant# R01 EB020683.

References

  1. 1.
    A.B.T. Association: Brain tumor statistics. vol. 2 (2016). Accessed MayGoogle Scholar
  2. 2.
    Louis, D.N., et al.: The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 114(2), 97–109 (2007)CrossRefGoogle Scholar
  3. 3.
    Holland, E.C.: Progenitor cells and glioma formation. Curr. Opin. Neurol. 14(6), 683–688 (2001)CrossRefGoogle Scholar
  4. 4.
    Ohgaki, H., Kleihues, P.: Population-based studies on incidence, survival rates, and genetic alterations in astrocytic and oligodendroglial gliomas. J. Neuropathol. Exp. Neurol. 64(6), 479–489 (2005)CrossRefGoogle Scholar
  5. 5.
    Lao, J., et al.: A deep learning-based radiomics model for prediction of survival in glioblastoma multiforme. Sci. Rep. 7(1), 10353 (2017)CrossRefGoogle Scholar
  6. 6.
    Nie, D., Zhang, H., Adeli, E., Liu, L., Shen, D.: 3D deep learning for multi-modal imaging-guided survival time prediction of brain tumor patients. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 212–220. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-46723-8_25CrossRefGoogle Scholar
  7. 7.
    Huang, C., Zhang, A., Xiao, G.: Deep Integrative Analysis for Survival Prediction (2017)Google Scholar
  8. 8.
    Chato, L., Latifi, S.: Machine learning and deep learning techniques to predict overall survival of brain tumor patients using MRI images. In: 2017 IEEE 17th International Conference on Bioinformatics and Bioengineering (BIBE), pp. 9–14. IEEE (2017)Google Scholar
  9. 9.
    Shboul, Z.A., Vidyaratne, L., Alam, M., Iftekharuddin, K.M.: Glioblastoma and survival prediction. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.) BrainLes 2017. LNCS, vol. 10670, pp. 358–368. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-75238-9_31CrossRefGoogle Scholar
  10. 10.
    Vidyaratne, L., Alam, M., Shboul, Z., Iftekharuddin, K.: Deep learning and texture-based semantic label fusion for brain tumor segmentation. In: Medical Imaging 2018: Computer-Aided Diagnosis, vol. 10575, p. 105750D. International Society for Optics and Photonics (2018)Google Scholar
  11. 11.
    Cyran, C.C., et al.: Visualization, imaging and new preclinical diagnostics in radiation oncology. Radiat. Oncol. 9(1), 3 (2014)CrossRefGoogle Scholar
  12. 12.
    Ellingson, B.M.: Radiogenomics and imaging phenotypes in glioblastoma: novel observations and correlation with molecular characteristics. Curr. Neurol. Neurosci. Rep. 15(1), 506 (2015)CrossRefGoogle Scholar
  13. 13.
    Kickingereder, P., et al.: Radiogenomics of glioblastoma: machine learning–based classification of molecular characteristics by using multiparametric and multiregional MR imaging features. Radiology 281(3), 907–918 (2016)CrossRefGoogle Scholar
  14. 14.
    Jain, R., et al.: Outcome prediction in patients with glioblastoma by using imaging, clinical, and genomic biomarkers: focus on the nonenhancing component of the tumor. Radiology 272(2), 484–493 (2014)CrossRefGoogle Scholar
  15. 15.
    VASARI Research Project - Cancer Imaging Archive Wiki. https://wiki.cancerimagingarchive.net/display/Public/VASARI+Research+Project
  16. 16.
    Gutman, D.A., et al.: MR imaging predictors of molecular profile and survival: multi-institutional study of the TCGA glioblastoma data set. Radiology 267(2), 560–569 (2013)CrossRefGoogle Scholar
  17. 17.
    Verhaak, R.G., et al.: Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17(1), 98–110 (2010)CrossRefGoogle Scholar
  18. 18.
    Nicolasjilwan, M., et al.: Addition of MR imaging features and genetic biomarkers strengthens glioblastoma survival prediction in TCGA patients. J. Neuroradiol. 42(4), 212–221 (2015)CrossRefGoogle Scholar
  19. 19.
    Prasanna, P., Patel, J., Partovi, S., Madabhushi, A., Tiwari, P.: Radiomic features from the peritumoral brain parenchyma on treatment-naive multi-parametric MR imaging predict long versus short-term survival in glioblastoma multiforme: preliminary findings. Eur. Radiol. 27(10), 4188–4197 (2017)CrossRefGoogle Scholar
  20. 20.
    Itakura, H., et al.: Magnetic resonance image features identify glioblastoma phenotypic subtypes with distinct molecular pathway activities. Sci. Transl. Med. 7(303), 303ra138 (2015)CrossRefGoogle Scholar
  21. 21.
    Bakas, S., et al.: Advancing The Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci. Data 4, 170117 (2017)CrossRefGoogle Scholar
  22. 22.
    Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-GBM collection. The Cancer Imaging Archive (2017)Google Scholar
  23. 23.
    Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-LGG collection. The Cancer Imaging Archive (2017)Google Scholar
  24. 24.
    Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2015)CrossRefGoogle Scholar
  25. 25.
    Bakas, S., et al.: Identifying the Best Machine Learning Algorithms for Brain Tumor Segmentation, Progression Assessment, and Overall Survival Prediction in the BRATS Challenge. arXiv preprint arXiv:1811.02629 (2018)
  26. 26.
    Dong, H., Yang, G., Liu, F., Mo, Y., Guo, Y.: Automatic brain tumor detection and segmentation using U-Net based fully convolutional networks. In: Valdés Hernández, M., González-Castro, V. (eds.) MIUA 2017. CCIS, vol. 723, pp. 506–517. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-60964-5_44CrossRefGoogle Scholar
  27. 27.
    Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-24574-4_28CrossRefGoogle Scholar
  28. 28.
    Milletari, F., Navab, N., Ahmadi, S.-A.: V-Net: Fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV), pp. 565–571. IEEE (2016)Google Scholar
  29. 29.
    Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)Google Scholar
  30. 30.
    Zhao, X., Wu, Y., Song, G., Li, Z., Fan, Y., Zhang, Y.: Brain tumor segmentation using a fully convolutional neural network with conditional random fields. In: Crimi, A., Menze, B., Maier, O., Reyes, M., Winzeck, S., Handels, H. (eds.) BrainLes 2016. LNCS, vol. 10154, pp. 75–87. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-55524-9_8CrossRefGoogle Scholar
  31. 31.
    Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)
  32. 32.
    Vallières, M., Freeman, C.R., Skamene, S.R., El Naqa, I.: A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys. Med. Biol. 60(14), 5471 (2015)CrossRefGoogle Scholar
  33. 33.
    Leung, T., Malik, J.: Representing and recognizing the visual appearance of materials using three-dimensional textons. Int. J. Comput. Vis. 43(1), 29–44 (2001)CrossRefGoogle Scholar
  34. 34.
    Iftekharuddin, K.M., Jia, W., Marsh, R.: Fractal analysis of tumor in brain MR images. Mach. Vis. Appl. 13(5–6), 352–362 (2003)CrossRefGoogle Scholar
  35. 35.
    Islam, A., Iftekharuddin, K.M., Ogg, R.J., Laningham, F.H., Sivakumar, B.: Multifractal modeling, segmentation, prediction, and statistical validation of posterior fossa tumors. In: Medical Imaging 2008: Computer-Aided Diagnosis, vol. 6915, p. 69153C. International Society for Optics and Photonics (2008)Google Scholar
  36. 36.
    Ayache, A., Véhel, J.L.: Generalized multifractional Brownian motion: definition and preliminary results. In: Dekking, M., Véhel, J.L., Lutton, E., Tricot, C. (eds.) Fractals, pp. 17–32. Springer, London (1999).  https://doi.org/10.1007/978-1-4471-0873-3_2CrossRefGoogle Scholar
  37. 37.
    Turner, K., Mukherjee, S., Boyer, D.M.: Persistent homology transform for modeling shapes and surfaces. Inf. Infer. J. IMA 3(4), 310–344 (2014)MathSciNetzbMATHGoogle Scholar
  38. 38.
    Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 785–794. ACM (2016)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Zeina A. Shboul
    • 1
    Email author
  • Mahbubul Alam
    • 1
  • Lasitha Vidyaratne
    • 1
  • Linmin Pei
    • 1
  • Khan M. Iftekharuddin
    • 1
  1. 1.Vision Lab, Electrical and Computer EngineeringOld Dominion UniversityNorfolkUSA

Personalised recommendations