Advertisement

Automatic Brain Tumor Segmentation with Domain Adaptation

  • Lutao Dai
  • Tengfei Li
  • Hai Shu
  • Liming Zhong
  • Haipeng Shen
  • Hongtu ZhuEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11384)

Abstract

Deep convolution neural networks, in particular, the encoder-decoder networks, have been extensively used in image segmentation. We develop a deep learning approach for tumor segmentation by combining a modified U-Net and its domain-adapted version (DAU-Net). We divide training samples into two domains according to preliminary segmentation results, and then equip the modified U-Net with domain adaptation structure to obtain a domain invariant feature representation. Our proposed segmentation approach is applied to the BraTS 2018 challenge for brain tumor segmentation, and achieves the mean dice score of 0.91044, 0.85057 and 0.80536 for whole tumor, tumor core and enhancing tumor, respectively, on the challenge’s validation data set.

Keywords

Confusion loss Domain adaptation Encoder-decoder network Brain tumor Segmentation 

Notes

Acknowlegement

This research was partially supported by Ministry of Science and Technology Major Project of China 2017YFC1310903, University of Hong Kong Stanley Ho Alumni Challenge Fund, University Research Committee Seed Funding Award 104004215, US National Science Foundation grants DMS-1407655, and NIH grants MH086633 and MH116527.

References

  1. 1.
    Badrinarayanan, V., Kendall, A., Cipolla, R.: Segnet: A deep convolutional encoder-decoder architecture for image segmentation. arXiv preprint arXiv:1511.00561 (2015)
  2. 2.
    Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-GBM collection. In: The Cancer Imaging Archive (2017)Google Scholar
  3. 3.
    Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-LGG collection. In: The Cancer Imaging Archive (2017)Google Scholar
  4. 4.
    Bakas, S., et al.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Nature Sci. Data 4, 170117 (2017)CrossRefGoogle Scholar
  5. 5.
    Bakas, S., Reyes, M., Menze, B., et al.: Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge. arXiv preprint arXiv:1811.02629 (2018)
  6. 6.
    Chen, T., Guestrin, C.: Xgboost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 785–794. ACM (2016)Google Scholar
  7. 7.
    Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-46723-8_49CrossRefGoogle Scholar
  8. 8.
    Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann. Stat. 1189–1232 (2001)Google Scholar
  9. 9.
    Huo, J., Okada, K., Pope, W., Brown, M.: Sampling-based ensemble segmentation against inter-operator variability. In: Medical Imaging 2011: Computer-Aided Diagnosis, vol. 7963, p. 796315. International Society for Optics and Photonics (2011)Google Scholar
  10. 10.
    Isensee, F., Kickingereder, P., Wick, W., Bendszus, M., Maier-Hein, K.H.: Brain tumor segmentation and radiomics survival prediction: contribution to the BRATS 2017 challenge. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.) BrainLes 2017. LNCS, vol. 10670, pp. 287–297. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-75238-9_25CrossRefGoogle Scholar
  11. 11.
    Kamnitsas, K., et al.: Ensembles of multiple models and architectures for robust brain tumour segmentation. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.) BrainLes 2017. LNCS, vol. 10670, pp. 450–462. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-75238-9_38CrossRefGoogle Scholar
  12. 12.
    Kayalibay, B., Jensen, G., van der Smagt, P.: CNN-based segmentation of medical imaging data. arXiv preprint arXiv:1701.03056 (2017)
  13. 13.
    Li, T., Fan, Z., Ziliang, Z., Hai, S., Hongtu, Z.: A label-fusion-aided convolutional neural network for isointense infant brain tissue segmentation. In: 2018 IEEE 15th International Symposium on Biomedical Imaging, pp. 692–695 (2018)Google Scholar
  14. 14.
    Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (brats). IEEE Trans. Med. Imaging 34(10), 1993 (2015)CrossRefGoogle Scholar
  15. 15.
    Noh, H., Hong, S., Han, B.: Learning deconvolution network for semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1520–1528 (2015)Google Scholar
  16. 16.
    Notley, S., Magdon-Ismail, M.: Examining the use of neural networks for feature extraction: A comparative analysis using deep learning, support vector machines, and k-nearest neighbor classifiers. arXiv preprint arXiv:1805.02294 (2018)
  17. 17.
    Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-24574-4_28CrossRefGoogle Scholar
  18. 18.
    Tustison, N.J., et al.: Large-scale evaluation of ants and freesurfer cortical thickness measurements. Neuroimage 99, 166–179 (2014)CrossRefGoogle Scholar
  19. 19.
    Tzeng, E., Hoffman, J., Darrell, T., Saenko, K.: Simultaneous deep transfer across domains and tasks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4068–4076 (2015)Google Scholar
  20. 20.
    Ulyanov, D., Vedaldi, A., Lempitsky, V.: Instance Normalization: The Missing Ingredient for Fast Stylization. arXiv.org, November 2017
  21. 21.
    Wu, Y., He, K.: Group Normalization. arXiv.org, June 2018
  22. 22.
    Zhou, F., Li, T., Li, H., Zhu, H.: TPCNN: two-phase patch-based convolutional neural network for automatic brain tumor segmentation and survival prediction. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.) BrainLes 2017. LNCS, vol. 10670, pp. 274–286. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-75238-9_24CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Lutao Dai
    • 1
  • Tengfei Li
    • 2
  • Hai Shu
    • 3
  • Liming Zhong
    • 3
    • 4
  • Haipeng Shen
    • 1
  • Hongtu Zhu
    • 2
    Email author
  1. 1.Faculty of Business and EconomicsThe University of Hong KongPok Fu LamHong Kong
  2. 2.The Biomedical Research Imaging Center, Department of Radiology and Department of BiostatisticsUniversity of North Carolina at Chapel HillChapel HillUSA
  3. 3.Department of BiostatisticsThe University of Texas MD Anderson Cancer CenterHoustonUSA
  4. 4.Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical EngineeringSouthern Medical UniversityGuangzhouChina

Personalised recommendations