Advertisement

3D-ESPNet with Pyramidal Refinement for Volumetric Brain Tumor Image Segmentation

  • Nicholas NuechterleinEmail author
  • Sachin Mehta
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11384)

Abstract

Automatic quantitative analysis of structural magnetic resonance (MR) images of brain tumors is critical to the clinical care of glioma patients, and for the future of advanced MR imaging research. In particular, automatic brain tumor segmentation can provide volumes of interest (VOIs) to scale the analysis of advanced MR imaging modalities such as perfusion-weighted imaging (PWI), diffusion-weighted imaging (DTI), and MR spectroscopy (MRS), which is currently hindered by the prohibitive cost and time of manual segmentations. However, automatic brain tumor segmentation is complicated by the high heterogeneity and dimensionality of MR data, and the relatively small size of available datasets. This paper extends ESPNet, a fast and efficient network designed for vanilla 2D semantic segmentation, to challenging 3D data in the medical imaging domain [11]. Even without substantive pre- and post-processing, our model achieves respectable brain tumor segmentation results, while learning only 3.8 million parameters. 3D-ESPNet achieves dice scores of 0.850, 0.665, and 0.782 on whole tumor, enhancing tumor, and tumor core classes on the test set of the 2018 BraTS challenge [1, 2, 3, 4, 12]. Our source code is open-source and available at https://github.com/sacmehta/3D-ESPNet.

Keywords

Glimoa BraTS ESPNet CNN Semantic segmentation 

References

  1. 1.
    Bakas, S., et al.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci. Data 4, 170117 (2017)CrossRefGoogle Scholar
  2. 2.
    Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-GBM collection. The Cancer Imaging Archive (2017).  https://doi.org/10.7937/K9/TCIA.2017.KLXWJJ1Q
  3. 3.
    Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-LGG collection. The Cancer Imaging Archive (2017).  https://doi.org/10.7937/K9/TCIA.2017.GJQ7R0EF
  4. 4.
    Bakas, S., et al.: Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the brats challenge. arXiv preprint arXiv:1811.02629 (2018)
  5. 5.
    Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2018)CrossRefGoogle Scholar
  6. 6.
    Ciresan, D.C., Gambardella, L.M., Giusti, A., Schmidhuber, J.: Deep neural networks segment neuronal membranes in electron microscopy images. In: NIPS, pp. 2852–2860 (2012)Google Scholar
  7. 7.
    Fink, J.R., Muzi, M., Peck, M., Krohn, K.A.: Multimodality brain tumor imaging: MR imaging, PET, and PET/MR imaging. J. Nucl. Med. 56(10), 1554–1561 (2015)CrossRefGoogle Scholar
  8. 8.
    Kamnitsas, K., et al.: Ensembles of multiple models and architectures for robust brain tumour segmentation. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.) BrainLes 2017. LNCS, vol. 10670, pp. 450–462. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-75238-9_38CrossRefGoogle Scholar
  9. 9.
    Kamnitsas, K., et al.: Deepmedic for brain tumor segmentation. In: BrainLes@MICCAI (2016)Google Scholar
  10. 10.
    Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
  11. 11.
    Mehta, S., Rastegari, M., Caspi, A., Shapiro, L., Hajishirzi, H.: Espnet: efficient spatial pyramid of dilated convolutions for semantic segmentation. arXiv preprint arXiv:1803.06815 (2018)
  12. 12.
    Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (brats). IEEE Trans. Med. Imaging 34(10), 1993 (2015)CrossRefGoogle Scholar
  13. 13.
    Milletari, F., Navab, N., Ahmadi, S.A.: V-net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV), pp. 565–571 (2016)Google Scholar
  14. 14.
    Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-24574-4_28CrossRefGoogle Scholar
  15. 15.
    Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2881–2890 (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.University of WashingtonSeattleUSA

Personalised recommendations