Advertisement

Brain Tumor Segmentation on Multimodal MR Imaging Using Multi-level Upsampling in Decoder

  • Yan Hu
  • Xiang Liu
  • Xin Wen
  • Chen Niu
  • Yong XiaEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11384)

Abstract

Accurate brain tumor segmentation plays a pivotal role in clinical practice and research settings. In this paper, we propose the multi-level up-sampling network (MU-Net) to learn the image presentations of transverse, sagittal and coronal view and fuse them to automatically segment brain tumors, including necrosis, edema, non-enhancing, and enhancing tumor, in multimodal magnetic resonance (MR) sequences. The MU-Net model has an encoder–decoder structure, in which low level feature maps obtained by the encoder and high level feature maps obtained by the decoder are combined by using a newly designed global attention (GA) module. The proposed model has been evaluated on the BraTS 2018 Challenge validation dataset and achieved an average Dice similarity coefficient of 0.88, 0.74, 0.69 and 0.85, 0.72, 0.66 for the whole tumor, core tumor and enhancing tumor on the validation dataset and testing dataset, respectively. Our results indicate that the proposed model has a promising performance in automated brain tumor segmentation.

Keywords

Magnetic resonance imaging Brain tumor segmentation Encoder–decoder Multi-level upsampling Global attention 

Notes

Acknowledgement

This work was supported in part by the National Natural Science Foundation of China under Grants 61471297 and 61771397.

References

  1. 1.
    Goodenberger, M.L., Jenkins, R.B.: Genetics of adult glioma. Cancer Genet. 205, 613–621 (2012).  https://doi.org/10.1016/j.cancergen.2012.10.009CrossRefGoogle Scholar
  2. 2.
    Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34, 1993–2024 (2015)CrossRefGoogle Scholar
  3. 3.
    Pereira, S., Oliveira, A., Alves, V., Silva, C.A.: On hierarchical brain tumor segmentation in MRI using fully convolutional neural networks: a preliminary study. In: 2017 IEEE 5th Portuguese Meeting on Bioengineering (ENBENG), pp. 1–4. IEEE (2017)Google Scholar
  4. 4.
    Zhao, L., Jia, K.: Multiscale CNNs for brain tumor segmentation and diagnosis. Comput. Math. Methods Med. 2016 (2016)Google Scholar
  5. 5.
    Kamnitsas, K., et al.: Deepmedic for brain tumor segmentation. In: Crimi, A., Menze, B., Maier, O., Reyes, M., Winzeck, S., Handels, H. (eds.) International Workshop on Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, pp. 138–149. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-55524-9_14CrossRefGoogle Scholar
  6. 6.
    Castillo, L.S., Daza, L.A., Rivera, L.C., Arbeláez, P.: Brain Tumor segmentation and parsing on MRIs using multiresolution neural networks. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.) BrainLes 2017. LNCS, vol. 10670, pp. 332–343. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-75238-9_29CrossRefGoogle Scholar
  7. 7.
    Moreno Lopez, M., Ventura, J.: Dilated convolutions for brain tumor segmentation in MRI scans. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.) BrainLes 2017. LNCS, vol. 10670, pp. 253–262. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-75238-9_22CrossRefGoogle Scholar
  8. 8.
    Yu, F., Koltun, V., Funkhouser, T.A.: Dilated residual networks. In: Computer Vision and Pattern Recognition, pp. 636–644 (2017)Google Scholar
  9. 9.
    McKinley, R., Jungo, A., Wiest, R., Reyes, M.: Pooling-free fully convolutional networks with dense skip connections for semantic segmentation, with application to brain tumor segmentation. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.) BrainLes 2017. LNCS, vol. 10670, pp. 169–177. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-75238-9_15CrossRefGoogle Scholar
  10. 10.
    Li, Y., Shen, L.: Deep learning based multimodal brain tumor diagnosis. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.) BrainLes 2017. LNCS, vol. 10670, pp. 149–158. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-75238-9_13CrossRefGoogle Scholar
  11. 11.
    Kamnitsas, K., et al.: Ensembles of multiple models and architectures for robust brain tumour segmentation. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.) BrainLes 2017. LNCS, vol. 10670, pp. 450–462. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-75238-9_38CrossRefGoogle Scholar
  12. 12.
    Wang, G., Li, W., Ourselin, S., Vercauteren, T.: Automatic brain tumor segmentation using cascaded anisotropic convolutional neural networks. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.) BrainLes 2017. LNCS, vol. 10670, pp. 178–190. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-75238-9_16CrossRefGoogle Scholar
  13. 13.
    Hu, Y., Xia, Y.: 3D deep neural network-based brain tumor segmentation using multimodality magnetic resonance sequences. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.) BrainLes 2017. LNCS, vol. 10670, pp. 423–434. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-75238-9_36CrossRefGoogle Scholar
  14. 14.
    Bakas, S.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci. Data 4, 170117 (2017)CrossRefGoogle Scholar
  15. 15.
    Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-GBM collection. The Cancer Imaging Archive (2017).  https://doi.org/10.7937/K9/TCIA.2017.KLXWJJ1Q
  16. 16.
    Bakas, S., et al.: Segmentation labels and radiomic features for the preoperative scans of the TCGA-LGG collection. The Cancer Imaging Archive (2017).  https://doi.org/10.7937/K9/TCIA.2017.GJQ7R0EF
  17. 17.
    Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. arXiv preprint arXiv:1802.02611 (2018)
  18. 18.
    He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 630–645. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-46493-0_38CrossRefGoogle Scholar
  19. 19.
  20. 20.
    Bakas, S., Reyes, M., Jakab, A, Bauer et al.: Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge. arXiv preprint arXiv:1811.02629 (2018)

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Yan Hu
    • 1
  • Xiang Liu
    • 2
  • Xin Wen
    • 2
  • Chen Niu
    • 2
  • Yong Xia
    • 1
    Email author
  1. 1.National Engineering Laboratory for Integrated Aero-Space-Ground-Ocean Big Data Application Technology, School of Computer Science and EngineeringNorthwestern Polytechnical UniversityXi’anPeople’s Republic of China
  2. 2.The First Affiliated Hospital of Xi’an Jiao Tong UniversityXi’anPeople’s Republic of China

Personalised recommendations