Glioma Prognosis: Segmentation of the Tumor and Survival Prediction Using Shape, Geometric and Clinical Information

  • Mobarakol Islam
  • V. Jeya Maria Jose
  • Hongliang RenEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11384)


Segmentation of brain tumor from magnetic resonance imaging (MRI) is a vital process to improve diagnosis, treatment planning and to study the difference between subjects with tumor and healthy subjects. In this paper, we exploit a convolutional neural network (CNN) with hypercolumn technique to segment tumor from healthy brain tissue. Hypercolumn is the concatenation of a set of vectors which form by extracting convolutional features from multiple layers. Proposed model integrates batch normalization (BN) approach with hypercolumn. BN layers help to alleviate the internal covariate shift during stochastic gradient descent (SGD) training by zero-mean and unit variance of each mini-batch. Survival Prediction is done by first extracting features (Geometric, Fractal, and Histogram) from the segmented brain tumor data. Then, the number of days of overall survival is predicted by implementing regression on the extracted features using an artificial neural network (ANN). Our model achieves a mean dice score of 89.78%, 82.53% and 76.54% for the whole tumor, tumor core and enhancing tumor respectively in segmentation task and 67.9% in overall survival prediction task with the validation set of BraTS 2018 challenge. It obtains a mean dice accuracy of 87.315%, 77.04% and 70.22% for the whole tumor, tumor core and enhancing tumor respectively in the segmentation task and a 46.8% in overall survival prediction task in the BraTS 2018 test data set.


Brain tumor segmentation Glioma Convolutional neural network Hypercolumn PixelNet Magnetic resonance imaging Survival prediction 



This work is supported by the Singapore Academic Research Fund under Grant R-397-000-227-112, NUSRI China Jiangsu Provincial Grant BK20150386 and BE2016077 and NMRC Bedside & Bench under grant R-397-000-245-511 awarded to Dr. Hongliang Ren.


  1. 1.
    Amorim, P.H.A.: 3D U-Nets for brain tumor segmentation in MICCAI 2017 BraTS challenge. In: International MICCAI Brainlesion Workshop, pp. 9–14. Springer (2017)Google Scholar
  2. 2.
    Bakas, S., et al.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci. Data 4, 170117 (2017)CrossRefGoogle Scholar
  3. 3.
    Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-GBM collection. Cancer Imaging Arch. 286 (2017).
  4. 4.
    Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-LGG collection. Cancer Imaging Arch. (2017).
  5. 5.
    Bakas, S., Reyes, M., et al.: Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the brats challenge. arXiv preprint arXiv:1811.02629 (2018)
  6. 6.
    Bansal, A., Chen, X., Russell, B., Gupta, A., Ramanan, D.: PixelNet: representation of the pixels, by the pixels, and for the pixels. arXiv preprint arXiv:1702.06506 (2017)
  7. 7.
    Holland, E.C.: Progenitor cells and glioma formation. Curr. Opin. Neurol. 14(6), 683–688 (2001)CrossRefGoogle Scholar
  8. 8.
    Hosmer Jr., D.W., Lemeshow, S., Sturdivant, R.X.: Applied Logistic Regression, vol. 398. Wiley, New York (2013)CrossRefGoogle Scholar
  9. 9.
    Shboul, Z.A., Vidyaratne, L., Alam, M., Iftekharuddin, K.M.: Glioblastoma and survival prediction. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.) BrainLes 2017. LNCS, vol. 10670, pp. 358–368. Springer, Cham (2018). Scholar
  10. 10.
    Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)
  11. 11.
    Islam, M., Ren, H.: Multi-modal PixelNet for brain tumor segmentation. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.) BrainLes 2017. LNCS, vol. 10670, pp. 298–308. Springer, Cham (2018). Scholar
  12. 12.
    Islam, M., Ren, H.: Class balanced PixelNet for neurological image segmentation. In: Proceedings of the 2018 6th International Conference on Bioinformatics and Computational Biology, pp. 83–87. ACM (2018)Google Scholar
  13. 13.
    Jia, Y., et al.: Caffe: convolutional architecture for fast feature embedding. In: Proceedings of the 22nd ACM International Conference on Multimedia, pp. 675–678. ACM (2014)Google Scholar
  14. 14.
    Joachims, T.: Making large-scale SVM learning practical. Technical report, SFB 475: Komplexitätsreduktion in Multivariaten Datenstrukturen, Universität Dortmund (1998)Google Scholar
  15. 15.
    Jungo, A., et al.: Towards uncertainty-assisted brain tumor segmentation and survival prediction. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.) BrainLes 2017. LNCS, vol. 10670, pp. 474–485. Springer, Cham (2018). Scholar
  16. 16.
    Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
  17. 17.
    Liaw, A., Wiener, M., et al.: Classification and regression by randomforest. R News 2(3), 18–22 (2002)Google Scholar
  18. 18.
    Mardia, K.V.: Measures of multivariate skewness and kurtosis with applications. Biometrika 57(3), 519–530 (1970)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993 (2015)CrossRefGoogle Scholar
  20. 20.
    Neter, J., Wasserman, W., Kutner, M.H.: Applied linear regression models (1989)Google Scholar
  21. 21.
    Pérez-Beteta, J., et al.: Glioblastoma: does the pre-treatment geometry matter? A postcontrast T1 MRI-based study. Eur. Radiol. 27(3), 1096–1104 (2017)CrossRefGoogle Scholar
  22. 22.
    Reishofer, G., Studencnik, F., Koschutnig, K., Deutschmann, H., Ahammer, H., Wood, G.: Age is reflected in the fractal dimensionality of MRI diffusion based tractography. Sci. Rep. 8(1), 5431 (2018)CrossRefGoogle Scholar
  23. 23.
    Schalkoff, R.J.: Artificial Neural Networks, vol. 1. McGraw-Hill, New York (1997)zbMATHGoogle Scholar
  24. 24.
    Yushkevich, P.A., Gao, Y., Gerig, G.: ITK-SNAP: an interactive tool for semi-automatic segmentation of multi-modality biomedical images. In: 2016 IEEE 38th Annual International Conference of the Engineering in Medicine and Biology Society (EMBC), pp. 3342–3345. IEEE (2016)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Mobarakol Islam
    • 1
    • 2
  • V. Jeya Maria Jose
    • 2
    • 3
  • Hongliang Ren
    • 2
    Email author
  1. 1.NUS Graduate School for Integrative Sciences and Engineering (NGS)National University of SingaporeSingaporeSingapore
  2. 2.Department of Biomedical EngineeringNational University of SingaporeSingaporeSingapore
  3. 3.Department of Instrumentation and Control EngineeringNational Institute of TechnologyTiruchirappalliIndia

Personalised recommendations