Advertisement

Perfusion Parameter Estimation Using Neural Networks and Data Augmentation

  • David RobbenEmail author
  • Paul Suetens
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11383)

Abstract

Perfusion imaging plays a crucial role in acute stroke diagnosis and treatment decision making. Current perfusion analysis relies on deconvolution of the measured signals, an operation that is mathematically ill-conditioned and requires strong regularization. We propose a neural network and a data augmentation approach to predict perfusion parameters directly from the native measurements. A comparison on simulated CT Perfusion data shows that the neural network provides better estimations for both CBF and Tmax than a state of the art deconvolution method, and this over a wide range of noise levels. The proposed data augmentation enables to achieve these results with less than 100 datasets.

Notes

Acknowledgement

David Robben is supported by an innovation mandate of Flanders Innovation & Entrepreneurship (VLAIO).

References

  1. 1.
    Albers, G.W., et al.: Ischemic core and hypoperfusion volumes predict infarct size in SWIFT PRIME. Ann. Neurol. 79(1), 76–89 (2016)CrossRefGoogle Scholar
  2. 2.
    Albers, G.W., et al.: Thrombectomy for stroke at 6 to 16 hours with selection by perfusion imaging. N. Engl. J. Med. 378(8), 708–718 (2018)CrossRefGoogle Scholar
  3. 3.
    Boutelier, T., Kudo, K., Pautot, F., Sasaki, M.: Bayesian hemodynamic parameter estimation by bolus tracking perfusion weighted imaging. IEEE Trans. Med. Imaging 31(7), 1381–1395 (2012)CrossRefGoogle Scholar
  4. 4.
    Fieselmann, A., Kowarschik, M., Ganguly, A., Hornegger, J., Fahrig, R.: Deconvolution-based CT and MR brain perfusion measurement: theoretical model revisited and practical implementation details. Int. J. Biomed. Imaging 2011, 1–20 (2011)CrossRefGoogle Scholar
  5. 5.
    Ho, K.C., Scalzo, F., Sarma, K.V., El-Saden, S., Arnold, C.W.: A temporal deep learning approach for MR perfusion parameter estimation in stroke. In: 2016 23rd International Conference on Pattern Recognition (ICPR), pp. 1315–1320. IEEE, December 2016Google Scholar
  6. 6.
    Kemmling, A., et al.: Multivariate dynamic prediction of ischemic infarction and tissue salvage as a function of time and degree of recanalization. J. Cereb. Blood Flow Metab. 35(9), 1397–1405 (2015)CrossRefGoogle Scholar
  7. 7.
    Maier, O., et al.: ISLES 2015 - a public evaluation benchmark for ischemic stroke lesion segmentation from multispectral MRI. Med. Image Anal. 35, 250–269 (2017)CrossRefGoogle Scholar
  8. 8.
    Meijs, M., Christensen, S., Lansberg, M.G., Albers, G.W., Calamante, F.: Analysis of perfusion MRI in stroke: to deconvolve, or not to deconvolve. Magn. Reson. Med. 76(4), 1282–1290 (2016)CrossRefGoogle Scholar
  9. 9.
    Nielsen, A., Hansen, M.B., Tietze, A., Mouridsen, K.: Prediction of tissue outcome and assessment of treatment effect in acute ischemic stroke using deep learning. Stroke 49(6), 1394–1401 (2018)CrossRefGoogle Scholar
  10. 10.
    Pinto, A., et al.: Enhancing clinical MRI perfusion maps with data-driven maps of complementary nature for lesion outcome prediction. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11072, pp. 107–115. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-00931-1_13CrossRefGoogle Scholar
  11. 11.
    Sourbron, S., Luypaert, R., Morhard, D., Seelos, K., Reiser, M., Peller, M.: Deconvolution of bolus-tracking data: a comparison of discretization methods. Phys. Med. Biol. 52(22), 6761–6778 (2007)CrossRefGoogle Scholar
  12. 12.
    Wu, O., et al.: Predicting tissue outcome in acute human cerebral ischemia using combined diffusion- and perfusion-weighted MR imaging. Stroke 32(4), 933–942 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Medical Image Computing (ESAT/PSI)KU LeuvenLeuvenBelgium

Personalised recommendations