Automatic Brain Structures Segmentation Using Deep Residual Dilated U-Net

  • Hongwei LiEmail author
  • Andrii Zhygallo
  • Bjoern Menze
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11383)


Brain image segmentation is used for visualizing and quantifying anatomical structures of the brain. We present an automated approach using 2D deep residual dilated networks which captures rich context information of different tissues for the segmentation of eight brain structures. The proposed system was evaluated in the MICCAI Brain Segmentation Challenge ( and ranked 9\(^{th}\) out of 22 teams. We further compared the method with traditional U-Net using leave-one-subject-out cross-validation setting on the public dataset. Experimental results shows that the proposed method outperforms traditional U-Net (i.e. 80.9% vs 78.3% in averaged Dice score, 4.35 mm vs 11.59 mm in averaged robust Hausdorff distance) and is computationally efficient.


Brain structure segmentation Deep learning 


  1. 1.
    Devalla, S.K., et al.: DRUNET: a dilated-residual u-net deep learning network to digitally stain optic nerve head tissues in optical coherence tomography images. arXiv preprint arXiv:1803.00232 (2018)
  2. 2.
    He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)Google Scholar
  3. 3.
    Klein, S., Staring, M., Murphy, K., Viergever, M.A., Pluim, J.P.: Elastix: a toolbox for intensity-based medical image registration. IEEE Trans. Med. Imaging 29(1), 196–205 (2010)CrossRefGoogle Scholar
  4. 4.
    Li, H., et al.: Fully convolutional network ensembles for white matter hyperintensities segmentation in MR images. arXiv preprint arXiv:1802.05203 (2018)
  5. 5.
    Li, H., Zhang, J., Muehlau, M., Kirschke, J., Menze, B.: Multi-scale convolutional-stack aggregation for robust white matter hyperintensities segmentation. arXiv preprint arXiv:1807.05153 (2018)
  6. 6.
    Maier, O., et al.: ISLES 2015-a public evaluation benchmark for ischemic stroke lesion segmentation from multispectral MRI. Med. Image Anal. 35, 250–269 (2017)CrossRefGoogle Scholar
  7. 7.
    Makropoulos, A., et al.: Automatic whole brain MRI segmentation of the developing neonatal brain. IEEE Trans. Med. Imaging 33(9), 1818–1831 (2014)CrossRefGoogle Scholar
  8. 8.
    Mendrik, A.M., et al.: MRBrainS challenge: online evaluation framework for brain image segmentation in 3T MRI scans. Comput. Intell. Neurosci. 2015, 1 (2015)CrossRefGoogle Scholar
  9. 9.
    Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (brats). IEEE Trans. Med. Imaging 34(10), 1993 (2015)CrossRefGoogle Scholar
  10. 10.
    Moeskops, P., et al.: Automatic segmentation of MR brain images of preterm infants using supervised classification. NeuroImage 118, 628–641 (2015)CrossRefGoogle Scholar
  11. 11.
    Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). arXiv:1505.04597CrossRefGoogle Scholar
  12. 12.
    Vrooman, H.A., et al.: Multi-spectral brain tissue segmentation using automatically trained k-nearest-neighbor classification. Neuroimage 37(1), 71–81 (2007)CrossRefGoogle Scholar
  13. 13.
    Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions. arXiv preprint arXiv:1511.07122 (2015)

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Technical University of MunichMunichGermany

Personalised recommendations