Advertisement

Ischemic Stroke Lesion Segmentation Using Adversarial Learning

  • Mobarakol Islam
  • N. Rajiv Vaidyanathan
  • V. Jeya Maria Jose
  • Hongliang RenEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11383)

Abstract

Ischemic stroke occurs through a blockage of clogged blood vessels supplying blood to the brain. Segmentation of the stroke lesion is vital to improve diagnosis, outcome assessment and treatment planning. In this work, we propose a segmentation model with adversarial learning for ischemic lesion segmentation. We adopt U-Net with skip connection and dropout as segmentation baseline network and a fully connected network (FCN) as discriminator network. Discriminator network consists of 5 convolution layers followed by leaky-ReLU and an upsampling layer to rescale the output to the size of the input map. Training a segmentation network along with an adversarial network can detect and correct higher order inconsistencies between the segmentation maps produced by ground-truth and the Segmentor. We exploit three modalities (CT, DPWI, CBF) of acute computed tomography (CT) perfusion data provided in ISLES 2018 (Ischemic Stroke Lesion Segmentation) for ischemic lesion segmentation. Our model has achieved dice accuracy of 42.10% with the cross-validation of training and 39% with the testing data.

Notes

Acknowledgement

This work is supported by the Singapore Academic Research Fund under Grant R-397-000-227-112, NUSRI China Jiangsu Provincial Grant BK20150386 and BE2016077 and NMRC Bedside & Bench under grant R-397-000-245-511 awarded to Dr. Hongliang Ren.

References

  1. 1.
    Bansal, A., Chen, X., Russell, B., Gupta, A., Ramanan, D.: PixelNet: representation of the pixels, by the pixels, and for the pixels. arXiv preprint arXiv:1702.06506 (2017)
  2. 2.
    Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2018)CrossRefGoogle Scholar
  3. 3.
    Drozdzal, M., Vorontsov, E., Chartrand, G., Kadoury, S., Pal, C.: The importance of skip connections in biomedical image segmentation. In: Carneiro, G., et al. (eds.) LABELS/DLMIA -2016. LNCS, vol. 10008, pp. 179–187. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-46976-8_19CrossRefGoogle Scholar
  4. 4.
    González, R.G., Hirsch, J.A., Koroshetz, W.J., Lev, M.H., Schaefer, P.W.: Acute Ischemic Stroke. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  5. 5.
    Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)Google Scholar
  6. 6.
    Hung, W.-C., Tsai, Y.-H., Liou, Y.-T., Lin, Y.-Y., Yang, M.-H.: Adversarial learning for semi-supervised semantic segmentation. arXiv preprint arXiv:1802.07934 (2018)
  7. 7.
    Islam, M., Ren, H.: Class balanced pixelnet for neurological image segmentation. In: Proceedings of the 2018 6th International Conference on Bioinformatics and Computational Biology, pp. 83–87. ACM (2018)Google Scholar
  8. 8.
    Luc, P., Couprie, C., Chintala, S., Verbeek, J.: Semantic segmentation using adversarial networks. arXiv preprint arXiv:1611.08408 (2016)
  9. 9.
    Maier, O., et al.: ISLES 2015-a public evaluation benchmark for ischemic stroke lesion segmentation from multispectral MRI. Med. Image Anal. 35, 250–269 (2017)CrossRefGoogle Scholar
  10. 10.
    Maier, O., Schröder, C., Forkert, N.D., Martinetz, T., Handels, H.: Classifiers for ischemic stroke lesion segmentation: a comparison study. PloS One 10(12), e0145118 (2015)CrossRefGoogle Scholar
  11. 11.
    Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010)Google Scholar
  12. 12.
    Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-24574-4_28CrossRefGoogle Scholar
  13. 13.
    World Health Organization (WHO), et al.: Cause-specific mortality estimates 2000–2012 (2014)Google Scholar
  14. 14.
    Winzeck, S., et al.: ISLES 2016 and 2017-benchmarking ischemic stroke lesion outcome prediction based on multispectral MRI. Front. Neurol. 9 (2018)Google Scholar
  15. 15.
    Zhao, H., Qi, X., Shen, X., Shi, J., Jia, J.: ICNet for real-time semantic segmentation on high-resolution images. arXiv preprint arXiv:1704.08545 (2017)
  16. 16.
    Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2881–2890 (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Mobarakol Islam
    • 1
    • 2
  • N. Rajiv Vaidyanathan
    • 2
    • 3
  • V. Jeya Maria Jose
    • 2
    • 4
  • Hongliang Ren
    • 2
    Email author
  1. 1.NUS Graduate School for Integrative Sciences and Engineering (NGS)National University of SingaporeSingaporeSingapore
  2. 2.Department of Biomedical EngineeringNational University of SingaporeSingaporeSingapore
  3. 3.Department of Mechanical EngineeringNITTiruchirappalliIndia
  4. 4.Department of Instrumentation and Control EngineeringNITTiruchirappalliIndia

Personalised recommendations