Advertisement

Dense Multi-path U-Net for Ischemic Stroke Lesion Segmentation in Multiple Image Modalities

  • Jose DolzEmail author
  • Ismail Ben Ayed
  • Christian Desrosiers
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11383)

Abstract

Delineating infarcted tissue in ischemic stroke lesions is crucial to determine the extend of damage and optimal treatment for this life-threatening condition. However, this problem remains challenging due to high variability of ischemic strokes’ location and shape.

Notes

Acknowledgments

This work is supported by the National Science and Engineering Research Council of Canada (NSERC), discovery grant program, and by the ETS Research Chair on Artificial Intelligence in Medical Imaging.

References

  1. 1.
    Aygün, M., Şahin, Y.H., Ünal, G.: Multi modal convolutional neural networks for brain tumor segmentation. arXiv preprint arXiv:1809.06191 (2018)
  2. 2.
    Barber, P., et al.: Imaging of the brain in acute ischaemic stroke: comparison of computed tomography and magnetic resonance diffusion-weighted imaging. J. Neurol. Neurosurg. Psychiatry 76(11), 1528–1533 (2005)CrossRefGoogle Scholar
  3. 3.
    Chalela, J.A., et al.: Magnetic resonance imaging and computed tomography in emergency assessment of patients with suspected acute stroke: a prospective comparison. Lancet 369(9558), 293–298 (2007)CrossRefGoogle Scholar
  4. 4.
    Chen, L., Bentley, P., Rueckert, D.: Fully automatic acute ischemic lesion segmentation in DWI using convolutional neural networks. NeuroImage: Clin. 15, 633–643 (2017)CrossRefGoogle Scholar
  5. 5.
    Chen, L., Wu, Y., DSouza, A.M., Abidin, A.Z., Wismüller, A., Xu, C.: MRI tumor segmentation with densely connected 3D CNN. In: Medical Imaging 2018: Image Processing. International Society for Optics and Photonics (2018)Google Scholar
  6. 6.
    Chen, Y., Wang, H., Long, Y.: Regularization of convolutional neural networks using shufflenode. In: 2017 IEEE International Conference on Multimedia and Expo (ICME), pp. 355–360. IEEE (2017)Google Scholar
  7. 7.
    Choi, Y., Kwon, Y., Lee, H., Kim, B.J., Paik, M.C., Won, J.H.: Ensemble of deep convolutional neural networks for prognosis of ischemic stroke. In: Crimi, A., Menze, B., Maier, O., Reyes, M., Winzeck, S., Handels, H. (eds.) BrainLes 2016. LNCS, vol. 10154, pp. 231–243. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-55524-9_22CrossRefGoogle Scholar
  8. 8.
    Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-46723-8_49CrossRefGoogle Scholar
  9. 9.
    Dolz, J., Ben Ayed, I., Yuan, J., Desrosiers, C.: Isointense infant brain segmentation with a hyper-dense connected convolutional neural network. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 616–620. IEEE (2018)Google Scholar
  10. 10.
    Dolz, J., Desrosiers, C., Wang, L., Yuan, J., Shen, D., Ayed, I.B.: Deep CNN ensembles and suggestive annotations for infant brain MRI segmentation. arXiv preprint arXiv:1712.05319 (2017)
  11. 11.
    Dolz, J., Gopinath, K., Yuan, J., Lombaert, H., Desrosiers, C., Ayed, I.B.: HyperDense-Net: a hyper-densely connected CNN for multi-modal image segmentation. arXiv preprint arXiv:1804.02967 (2018)
  12. 12.
    Dong, H., Yang, G., Liu, F., Mo, Y., Guo, Y.: Automatic brain tumor detection and segmentation using U-Net based fully convolutional networks. In: Valdés Hernández, M., González-Castro, V. (eds.) MIUA 2017. CCIS, vol. 723, pp. 506–517. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-60964-5_44CrossRefGoogle Scholar
  13. 13.
    Feigin, V.L., Lawes, C.M., Bennett, D.A., Anderson, C.S.: Stroke epidemiology: a review of population-based studies of incidence, prevalence, and case-fatality in the late 20th century. Lancet Neurol. 2(1), 43–53 (2003)CrossRefGoogle Scholar
  14. 14.
    Guerrero, R., et al.: White matter hyperintensity and stroke lesion segmentation and differentiation using convolutional neural networks. NeuroImage: Clin. 17, 918–934 (2018)CrossRefGoogle Scholar
  15. 15.
    Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: CVPR, vol. 1, p. 3 (2017)Google Scholar
  16. 16.
    Kamnitsas, K., Chen, L., Ledig, C., Rueckert, D., Glocker, B.: Multi-scale 3D convolutional neural networks for lesion segmentation in brain MRI. Ischemic Stroke Lesion Segment. 13, 46 (2015)Google Scholar
  17. 17.
    Kamnitsas, K., et al.: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med. Image Anal. 36, 61–78 (2017)CrossRefGoogle Scholar
  18. 18.
    Lansberg, M.G., Albers, G.W., Beaulieu, C., Marks, M.P.: Comparison of diffusion-weighted MRI and CT in acute stroke. Neurology 54(8), 1557–1561 (2000)CrossRefGoogle Scholar
  19. 19.
    Lopez, A.D., Mathers, C.D., Ezzati, M., Jamison, D.T., Murray, C.J.: Global and regional burden of disease and risk factors, 2001: systematic analysis of population health data. Lancet 367(9524), 1747–1757 (2006)CrossRefGoogle Scholar
  20. 20.
    Maier, O., et al.: ISLES 2015-a public evaluation benchmark for ischemic stroke lesion segmentation from multispectral MRI. Med. Image Anal. 35, 250–269 (2017)CrossRefGoogle Scholar
  21. 21.
    Maier, O., Schröder, C., Forkert, N.D., Martinetz, T., Handels, H.: Classifiers for ischemic stroke lesion segmentation: a comparison study. PloS One 10(12), e0145118 (2015)CrossRefGoogle Scholar
  22. 22.
    Moeskops, P., Viergever, M.A., Mendrik, A.M., de Vries, L.S., Benders, M.J., Išgum, I.: Automatic segmentation of MR brain images with a convolutional neural network. IEEE Trans. Med. Imaging 35(5), 1252–1261 (2016)CrossRefGoogle Scholar
  23. 23.
    Nie, D., Wang, L., Gao, Y., Sken, D.: Fully convolutional networks for multi-modality isointense infant brain image segmentation. In: 2016 13th International Symposium on Biomedical Imaging (ISBI), pp. 1342–1345. IEEE (2016)Google Scholar
  24. 24.
    Praveen, G., Agrawal, A., Sundaram, P., Sardesai, S.: Ischemic stroke lesion segmentation using stacked sparse autoencoder. Comput. Biol. Med. 99, 38–52 (2018)CrossRefGoogle Scholar
  25. 25.
    Rekik, I., Allassonnière, S., Carpenter, T.K., Wardlaw, J.M.: Medical image analysis methods in MR/CT-imaged acute-subacute ischemic stroke lesion: segmentation, prediction and insights into dynamic evolution simulation models. A critical appraisal. NeuroImage: Clin. 1(1), 164–178 (2012)CrossRefGoogle Scholar
  26. 26.
    Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: ERFNet: efficient residual factorized ConvNet for real-time semantic segmentation. IEEE Trans. Intell. Transp. Syst. 19(1), 263–272 (2018)CrossRefGoogle Scholar
  27. 27.
    Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-24574-4_28CrossRefGoogle Scholar
  28. 28.
    Seshadri, S., Wolf, P.A.: Lifetime risk of stroke and dementia: current concepts, and estimates from the framingham study. Lancet Neurol. 6(12), 1106–1114 (2007)CrossRefGoogle Scholar
  29. 29.
    Sirinukunwattana, K., et al.: Gland segmentation in colon histology images: the glas challenge contest. Med. Image Anal. 35, 489–502 (2017)CrossRefGoogle Scholar
  30. 30.
    Srivastava, N., Salakhutdinov, R.: Multimodal learning with deep Boltzmann machines. J. Mach. Learn. Res. 15, 2949–2980 (2014)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Sudlow, C., Warlow, C.: Comparable studies of the incidence of stroke and its pathological types: results from an international collaboration. Stroke 28(3), 491–499 (1997)CrossRefGoogle Scholar
  32. 32.
    Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: CVPR, pp. 2818–2826 (2016)Google Scholar
  33. 33.
    Valverde, S., et al.: Improving automated multiple sclerosis lesion segmentation with a cascaded 3D convolutional neural network approach. NeuroImage 155, 159–168 (2017)CrossRefGoogle Scholar
  34. 34.
    Van der Worp, H.B., van Gijn, J.: Acute ischemic stroke. N. Engl. J. Med. 357(6), 572–579 (2007)CrossRefGoogle Scholar
  35. 35.
    Winzeck, S., et al.: ISLES 2016 and 2017-benchmarking ischemic stroke lesion outcome prediction based on multispectral MRI. Front. Neurol. 9 (2018)Google Scholar
  36. 36.
    Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions. arXiv preprint arXiv:1511.07122 (2015)
  37. 37.
    Yu, L., et al.: Automatic 3D cardiovascular MR segmentation with densely-connected volumetric ConvNets. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10434, pp. 287–295. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-66185-8_33CrossRefGoogle Scholar
  38. 38.
    Zhang, T., Qi, G.-J., Xiao, B., Wang, J.: Interleaved group convolutions. In: CVPR, pp. 4373–4382 (2017)Google Scholar
  39. 39.
    Zhang, W., et al.: Deep convolutional neural networks for multi-modality isointense infant brain image segmentation. NeuroImage 108, 214–224 (2015)CrossRefGoogle Scholar
  40. 40.
    Zhang, X., Zhou, X., Lin, M., Sun, J.: ShuffleNet: an extremely efficient convolutional neural network for mobile devices. arXiv preprint arXiv:1707.01083 (2017)

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jose Dolz
    • 1
    Email author
  • Ismail Ben Ayed
    • 1
  • Christian Desrosiers
    • 1
  1. 1.Laboratory of Imaging, Vision and Artificial IntelligenceEcole de techologie supérieureMontrealCanada

Personalised recommendations