• Rachel PfliegerEmail author
  • Sergey I. Nikitenko
  • Carlos Cairós
  • Robert Mettin
Part of the SpringerBriefs in Molecular Science book series (BRIEFSMOLECULAR)


Sonochemical splitting of thermodynamically very stable water molecule provides the evidence for drastic conditions inside the cavitation bubble. Kinetics of OH radicals or H2O2 molecules formation during sonolysis of water can be used for quantification of acoustic power delivered to the system. This chapter focuses on the influence of several fundamental parameters, such as ultrasonic frequency, saturating gas, and some soluble nitrogen compounds on chemical reactivity of multibubble cavitation in homogeneous aqueous media in connection with the recent data on multibubble sonoluminescence.


  1. 1.
    Richards WT, Loomis AL (1927) The chemical effects of high frequency sound waves. I. A preliminary survey. J Am Chem Soc 49:3086–3100CrossRefGoogle Scholar
  2. 2.
    Schmitt FO, Johnson CH, O AR (1929) Oxidation promoted by ultrasonic radiation. J Am Chem Soc 51:370–375CrossRefGoogle Scholar
  3. 3.
    Wu TY, Guo N, Teh CY, Hay JXW (2013) Advances in ultrasound technology for environmental remediation. Springer, DordrechtCrossRefGoogle Scholar
  4. 4.
    Gedanken A (2004) Using sonochemistry for the fabrication of nanomaterials. Ultrason Sonochem 11:47–55CrossRefGoogle Scholar
  5. 5.
    Xu HX, Zeiger BW, Suslick KS (2013) Sonochemical synthesis of nanomaterials. Chem Soc Rev 42:2555–2567CrossRefGoogle Scholar
  6. 6.
    Chave T, Navarro NM, Nitsche S, Nikitenko SI (2012) Mechanism of PtIV Sonochemical Reduction in formic acid media and pure water. Chem Eur J 18:3879–3885CrossRefGoogle Scholar
  7. 7.
    Iida Y, Yasui K, Tuziuti T, Sivakumar M (2005) Sonochemistry and its dosimetry. Microchem J 80:159–164CrossRefGoogle Scholar
  8. 8.
    Wood RJ, Lee J, Bussemaker MJ (2017) A parametric review of sonochemistry: control and augmentation of sonochemical activity in aqueous solutions. Ultrason Sonochem 38:351–370CrossRefGoogle Scholar
  9. 9.
    Herzberg G (1979) Molecular spectra and molecular structure: constants of diatomic molecules. Van Nostrand, New YorkGoogle Scholar
  10. 10.
    Pflieger R, Brau HP, Nikitenko SI (2010) Sonoluminescence from OH(C2Σ+) and OH(A2Σ+) radicals in water: evidence for plasma formation during multibubble cavitation. Chem Eur J 16:11801–11803Google Scholar
  11. 11.
    Ebrahiminia A, Mokhtari-Dizaji M, Toliyat T (2013) Correlation between iodide dosimetry and terephthalic acid dosimetry to evaluate the reactive radical production due to the acoustic cavitation activity. Ultrason Sonochem 20:366–372CrossRefGoogle Scholar
  12. 12.
    Ouerhani T, Pflieger R, Ben Messaoud W, Nikitenko SI (2015) Spectroscopy of sonoluminescence and sonochemistry in water saturated with N2−Ar mixtures. J Phys Chem B 119:15885–15891CrossRefGoogle Scholar
  13. 13.
    Abeledo CA, Kolthoff IM (1931) The reaction between nitrite and iodide and its application to the iodometric titration of these anions. J Am Chem Soc 53:2893–2897CrossRefGoogle Scholar
  14. 14.
    Couto AB, de Souza DC, Sartori ER, Jacob P, Klockow D, Neves EA (2006) The catalytic cycle of oxidation of iodide ion in the oxygen/nitrous acid/nitric oxide system and its potential for analytical applications. Anal Lett 39:2763–2774CrossRefGoogle Scholar
  15. 15.
    Mark G, Tauber A, Rudiger LA, Schuchmann HP, Schulz D, Mues A, von Sonntag C (1998) OH-radical formation by ultrasound in aqueous solution—Part II: Terephthalate and Fricke dosimetry and the influence of various conditions on the sonolytic yield. Ultrason Sonochem 5:41–52CrossRefGoogle Scholar
  16. 16.
    Chang CY, Hsieh YH, Cheng KY, Hsieh LL, Cheng TC, Yao KS (2008) Effect of pH on Fenton process using estimation of hydroxyl radical with salicylic acid as trapping reagent. Water Sci Technol 58:873–879CrossRefGoogle Scholar
  17. 17.
    Milne L, Stewart I, Bremner DH (2013) Comparison of hydroxyl radical formation in aqueous solutions at different ultrasound frequencies and powers using the salicylic acid dosimeter. Ultrason Sonochem 20:984–989CrossRefGoogle Scholar
  18. 18.
    Nikitenko SI, Le Naour C, Moisy P (2007) Comparative study of sonochemical reactors with different geometry using thermal and chemical probes. Ultrason Sonochem 14:330–336CrossRefGoogle Scholar
  19. 19.
    Pflieger R, Chave T, Vite G, Jouve L, Nikitenko SI (2015) Effect of operational conditions on sonoluminescence and kinetics of H2O2 formation during the sonolysis of water in the presence of Ar/O2 gas mixture. Ultrason Sonochem 26:169–175CrossRefGoogle Scholar
  20. 20.
    Mason TJ, Lorimer JP (1989) Sonochemistry, theory, applications and uses of ultrasound in chemistry. Prentice Hall, New JerseyGoogle Scholar
  21. 21.
    Petrier C, Jeunet A, Luche JL, Reverdy G (1992) Unexpected frequency-effects on the rate of oxidative processes induced by ultrasound. J Am Chem Soc 114:3148–3150CrossRefGoogle Scholar
  22. 22.
    Beckett MA, Hua I (2001) Impact of ultrasonic frequency on aqueous sonoluminescence and sonochemistry. J Phys Chem A 105:3796–3802CrossRefGoogle Scholar
  23. 23.
    Kanthale P, Ashokkumar M, Grieser F (2008) Sonoluminescence, sonochemistry (H2O2 yield) and bubble dynamics: frequency and power effects. Ultrason Sonochem 15:143–150CrossRefGoogle Scholar
  24. 24.
    Ndiaye AA, Pflieger R, Siboulet B, Molina J, Dufreche JF, Nikitenko SI (2012) Nonequilibrium vibrational excitation of OH radicals generated during multibubble cavitation in water. J Phys Chem A 116:4860–4867CrossRefGoogle Scholar
  25. 25.
    Navarro NM, Chave T, Pochon P, Bisel I, Nikitenko SI (2011) Effect of ultrasonic frequency on the mechanism of formic acid sonolysis. J Phys Chem B 115:2024–2029CrossRefGoogle Scholar
  26. 26.
    Fischer CH, Hart EJ, Henglein A (1986) Ultrasonic irradiation of water in the presence of 18,18O2—isotope exchange and isotopic distribution of H2O2. J Phys Chem 90:1954–1956Google Scholar
  27. 27.
    Petrier C, Combet E, Mason T (2007) Oxygen-induced concurrent ultrasonic degradation of volatile and non-volatile aromatic compounds. Ultrason Sonochem 14:117–121CrossRefGoogle Scholar
  28. 28.
    Wagatsuma K, Hirokawa K (1995) Effect of oxygen addition to an argon glow-discharge plasma source in atomic-emission spectrometry. Anal Chim Acta 306:193–200CrossRefGoogle Scholar
  29. 29.
    Shultes H, Gohr H (1936) Über chemische Wirkungen der Ultraschallwellen. Angew Chem 49:420–423CrossRefGoogle Scholar
  30. 30.
    Misik V, Riesz P (1999) Detection of primary free radical species in aqueous sonochemistry by EPR spectroscopy. In: Crum LA, Mason TJ, Reisse JL, Suslick KS (eds) Sonochemistry and sonoluminescence, pp 225–236CrossRefGoogle Scholar
  31. 31.
    Wakeford CA, Blackburn R, Lickiss PD (1999) Effect of ionic strength on the acoustic generation of nitrite, nitrate and hydrogen peroxide. Ultrason Sonochem 6:141–148CrossRefGoogle Scholar
  32. 32.
    Hart EJ, Fischer CH, Henglein A (1986) Isotopic exchange in the sonolysis of aqueous-solutions containing 14,14N2 and 15,15N2. J Phys Chem 90:5989–5991Google Scholar
  33. 33.
    Pflieger R, Ouerhani T, Belmonte T, Nikitenko SI (2017) Use of NH (A3Πi-X3 Σ-) sonoluminescence for diagnostics of nonequilibrium plasma produced by multibubble cavitation. Phys Chem Chem Phys 19:26272–26279Google Scholar
  34. 34.
    Nikitenko SI, Martinez P, Chave T, Billy I (2009) Sonochemical disproportionation of carbon monoxide in water: evidence for treanor effect during multibubble cavitation. Angewandte Chemie-International Edition 48:9529–9532CrossRefGoogle Scholar
  35. 35.
    Fridman A (2008) Plasma chemistry. Cambridge University PressGoogle Scholar
  36. 36.
    Bigeleisen J (1965) Chemistry of isotopes. Science 147:463−471CrossRefGoogle Scholar
  37. 37.
    Navarro NM, Pflieger R, Nikitenko SI (2014) Multibubble sonoluminescence as a tool to study the mechanism of formic acid sonolysis. Ultrason Sonochem 21:1026–1029CrossRefGoogle Scholar
  38. 38.
    Kumari S, Keswani M, Singh S, Beck M, Liebscher E, Deymier P, Raghavan S (2011) Control of sonoluminescence signal in deionized water using carbon dioxide. Microelectron Eng 88:3437–3441CrossRefGoogle Scholar
  39. 39.
    Henglein A (1985) Sonolysis of Carbon-dioxide, nitrous-oxide and methane in aqueous-solution, Zeitschrift Fur Naturforschung Section B-a. J Chem Sci 40:100–107Google Scholar
  40. 40.
    Harada H (1998) Sonochemical reduction of carbon dioxide. Ultrason Sonochem 5:73–77CrossRefGoogle Scholar

Copyright information

© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Rachel Pflieger
    • 1
    Email author
  • Sergey I. Nikitenko
    • 1
  • Carlos Cairós
    • 2
  • Robert Mettin
    • 3
  1. 1.Marcoule Institute for Separation Chemistry, ICSM UMR5257, CEA, CNRSUniversity of Montpellier, ENSCMBagnols-sur-Cèze CedexFrance
  2. 2.Department of Analytical ChemistryUniversity of La LagunaLa Laguna, TenerifeSpain
  3. 3.Third Institute of PhysicsGeorg-August-University GöttingenGöttingenGermany

Personalised recommendations