• Rachel PfliegerEmail author
  • Sergey I. Nikitenko
  • Carlos Cairós
  • Robert Mettin
Part of the SpringerBriefs in Molecular Science book series (BRIEFSMOLECULAR)


The previous chapter presented physical characterizations of cavitation bubbles on the microscopic scale, looking, e.g., on the bubble shape, on its stability and evolution, and on the way bubble dynamics can explain energy focusing that leads to sonochemistry and sonoluminescence. These latter two phenomena are macroscopic manifestations of acoustic cavitation and can also serve to characterize bubbles and their activity.


  1. 1.
    Young FR (2005) Sonoluminescence. CRC Press, New YorkGoogle Scholar
  2. 2.
    Bruggeman PJ, Kushner MJ, Locke BR, Gardeniers JGE, Graham WG, Graves DB, Hofman-Caris R, Maric D, Reid JP, Ceriani E, Rivas DF, Foster JE, Garrick SC, Gorbanev Y, Hamaguchi S, Iza F, Jablonowski H, Klimova E, Kolb J, Krcma F, Lukes P, Machala Z, Marinov I, Mariotti D, Thagard SM, Minakata D, Neyts EC, Pawlat J, Petrovic ZL, Pflieger R, Reuter S, Schram DC, Schroter S, Shiraiwa M, Tarabova B, Tsai PA, Verlet JRR, von Woedtke T, Wilson KR, Yasui K, Zvereva G (2016) Plasma-liquid interactions: a review and roadmap. Plasma Sources Sci Technol 25CrossRefGoogle Scholar
  3. 3.
    Flannigan DJ, Suslick KS (2005) Plasma formation and temperature measurement during single-bubble cavitation. Nature 434:52–55CrossRefGoogle Scholar
  4. 4.
    Flannigan DJ, Suslick KS (2005) Plasma line emission during single-bubble cavitation. Phys Rev Lett 95Google Scholar
  5. 5.
    Pflieger R, Brau HP, Nikitenko SI (2010) Sonoluminescence from OH(C2Σ​+) and OH(A2Σ+) radicals in water: evidence for plasma formation during multibubble cavitation. Chem Eur J 16:11801–11803Google Scholar
  6. 6.
    Michel A (1957) Das C2Σ +- A2Σ+- Bandensystem von OH, Zeitschrift Für Naturforschung Part A-Astrophysik Physik Und Physikalische Chemie 12:887–896Google Scholar
  7. 7.
    Carlone C, Dalby FW (1969) Spectrum of hydroxyl radical. Can J Phys 47:1945–1957CrossRefGoogle Scholar
  8. 8.
    Luque J, Crosley DR (1999) LIFBASE: database and spectral simulation. In: SRI international report MP 99-009Google Scholar
  9. 9.
    Laux CO, Spence TG, Kruger CH, Zare RN (2003) Optical diagnostics of atmospheric pressure air plasmas. Plasma Sources Sci Technol 12:125–138CrossRefGoogle Scholar
  10. 10.
    Flint EB, Suslick KS (1991) The temperature of cavitation. Science 253:1397–1399CrossRefGoogle Scholar
  11. 11.
    Didenko YT, McNamara WB, Suslick KS (1999) Hot spot conditions during cavitation in water. J Am Chem Soc 121:5817–5818CrossRefGoogle Scholar
  12. 12.
    McNamara WB, Didenko YT, Suslick KS (1999) Sonoluminescence temperatures during multi-bubble cavitation. Nature 401:772–775CrossRefGoogle Scholar
  13. 13.
    Xu HX, Glumac NG, Suslick KS (2010) Temperature inhomogeneity during multibubble sonoluminescence. Angewandte Chemie-International Edition 49:1079–1082CrossRefGoogle Scholar
  14. 14.
    Eddingsaas NC, Suslick KS (2007) Evidence for a plasma core during multibubble sonoluminescence in sulfuric acid. J Am Chem Soc 129:3838–3839CrossRefGoogle Scholar
  15. 15.
    Xu HS, Suslick KS (2010) Molecular emission and temperature measurements from single-bubble sonoluminescence. Phys Rev Lett 104:244301Google Scholar
  16. 16.
    Pflieger R, Ndiaye AA, Chave T, Nikitenko SI (2015) Influence of ultrasonic frequency on Swan band sonoluminescence and sonochemical activity in aqueous tert-butyl alcohol solutions. J Phys Chem B 119:284–290CrossRefGoogle Scholar
  17. 17.
    Pflieger R, Ouerhani T, Belmonte T, Nikitenko SI (2017) Use of NH (A3Πi-X3 Σ-) sonoluminescence for diagnostics of nonequilibrium plasma produced by multibubble cavitation. Phys Chem Chem Phys 19:26272–26279Google Scholar
  18. 18.
    Suslick KS, Eddingsaas NC, Flannigan DJ, Hopkins SD, Xu HX (2011) Extreme conditions during multibubble cavitation: sonoluminescence as a spectroscopic probe. Ultrason Sonochem 18:842–846CrossRefGoogle Scholar
  19. 19.
    Ciawi E, Ashokkumar M, Grieser F (2006) Limitations of the methyl radical recombination method for acoustic cavitation bubble temperature measurements in aqueous solutions. J Phys Chem B 110:9779–9781CrossRefGoogle Scholar
  20. 20.
    Ciawi E, Rae J, Ashokkumar M, Grieser F (2006) Determination of temperatures within acoustically generated bubbles in aqueous solutions at different ultrasound frequencies. J Phys Chem B 110:13656–13660CrossRefGoogle Scholar
  21. 21.
    Ndiaye AA, Pflieger R, Siboulet B, Molina J, Dufreche JF, Nikitenko SI (2012) Nonequilibrium vibrational excitation of OH radicals generated during multibubble cavitation in water. J Phys Chem A 116:4860–4867CrossRefGoogle Scholar
  22. 22.
    Flannigan DJ, Suslick KS (2013) Non-Boltzmann population distributions during single-bubble sonoluminescence. J Phys Chem B 117:15886–15893CrossRefGoogle Scholar
  23. 23.
    Gigosos MA (2014) Stark broadening models for plasma diagnostics. J Phys D Appl Phys 47CrossRefGoogle Scholar
  24. 24.
    Margenau H, Lewis M (1959) Structure of spectral lines from plasmas. Rev Mod Phys 31:569–615CrossRefGoogle Scholar
  25. 25.
    Lepoint-Mullie F, Voglet N, Lepoint T, Avni R (2001) Evidence for the emission of’alkali-metal-noble-gas’ van der Waals molecules from cavitation bubbles. Ultrason Sonochem 8:151–158CrossRefGoogle Scholar
  26. 26.
    Sehgal C, Steer RP, Sutherland RG, Verrall RE (1979) Sonoluminescence of argon saturated alkali-metal salt-solutions as a probe of acoustic cavitation. J Chem Phys 70:2242–2248CrossRefGoogle Scholar
  27. 27.
    Choi PK, Abe S, Hayashi Y (2008) Sonoluminescence of Na atom from NaCl solutions doped with ethanol. J Phys Chem B 112:918–922CrossRefGoogle Scholar
  28. 28.
    Kazachek MV, Gordeychuk TV (2009) Estimation of the cavitation peak pressure using the Na D-line structure in the sonoluminescence spectra. Tech Phys Lett 35:193–196CrossRefGoogle Scholar
  29. 29.
    Flannigan DJ, Hopkins SD, Camara CG, Putterman SJ, Suslick KS (2006) Measurement of pressure and density inside a single sonoluminescing bubble. Phys Rev Lett 96Google Scholar
  30. 30.
    Derkaoui N, Rond C, Gries T, Henrion G, Gicquel A (2014) Determining electron temperature and electron density in moderate pressure H2/CH4 microwave plasma. J Phys D Appl Phys 47Google Scholar
  31. 31.
    Gicquel A, Chenevier M, Hassouni K, Tserepi A, Dubus M (1998) Validation of actinometry for estimating relative hydrogen atom densities and electron energy evolution in plasma assisted diamond deposition reactors. J Appl Phys 83:7504–7521CrossRefGoogle Scholar
  32. 32.
    Shatas AA, Hu YZ, Irene EA (1992) Langmuir probe and optical-emission studies of Ar, O2, and N2 plasmas produced by an electron-cyclotron resonance microwave source. J Vac Sci Technol A-Vac Surfaces Films 10:3119–3124CrossRefGoogle Scholar
  33. 33.
    Mehdi T, Legrand PB, Dauchot JP, Wautelet M, Hecq M (1993) Optical-emission diagnostics of an RF magnetron sputtering discharge. Spectrochim Acta Part B-Atomic Spectrosc 48:1023–1033CrossRefGoogle Scholar
  34. 34.
    Belmonte T, Noel C, Gries T, Martin J, Henrion G (2015) Theoretical background of optical emission spectroscopy for analysis of atmospheric pressure plasmas. Plasma Sources Sci Technol 24CrossRefGoogle Scholar
  35. 35.
    Lepoint-Mullie F, De Pauw D, Lepoint T, Supiot P, Avni R (1996) Nature of the “extreme conditions” in single sonoluminescing bubbles (vol 100, p 12140). J Phys Chem A 103(1999):3346Google Scholar
  36. 36.
    Lepoint T, Lepoint-Mullie F, Avni R (1996) Plasma diagnostics and sonoluminescence. J Acoust Soc Am 100:2677CrossRefGoogle Scholar
  37. 37.
    Flannigan DJ, Suslick KS (2010) Inertially confined plasma in an imploding bubble. Nat Phys 6:598–601CrossRefGoogle Scholar
  38. 38.
    Pflieger R, Chave T, Vite G, Jouve L, Nikitenko SI (2015) Effect of operational conditions on sonoluminescence and kinetics of H2O2 formation during the sonolysis of water in the presence of Ar/O2 gas mixture. Ultrason Sonochem 26:169–175CrossRefGoogle Scholar
  39. 39.
    Ouerhani T, Pflieger R, Ben Messaoud E, Nikitenko SI (2015) Spectroscopy of sonoluminescence and sonochemistry in water saturated with N2 − Ar mixtures. J Phys Chem B 119:15885–15891CrossRefGoogle Scholar
  40. 40.
    Taylor KJ, Jarman PD (1970) Spectra of sonoluminescence. Aust J Phys Aust J Phys 23:319Google Scholar
  41. 41.
    Wall M, Ashokkumar M, Tronson R, Grieser F (1999) Multibubble sonoluminescence in aqueous salt solutions. Ultrason Sonochem 6:7–14CrossRefGoogle Scholar
  42. 42.
    Nakajima R, Hayashi Y, Choi PK (2015) Mechanism of two types of Na emission observed in sonoluminescence. Jpn J Appl Phys 54CrossRefGoogle Scholar
  43. 43.
    Abe S, Choi PK (2009) Spatiotemporal separation of Na-atom emission from continuum emission in sonoluminescence. Jpn J Appl Phys 48Google Scholar
  44. 44.
    Cairos C, Schneider J, Pflieger R, Mettin R (2014) Effects of argon sparging rate, ultrasonic power, and frequency on multibubble sonoluminescence spectra and bubble dynamics in NaCl aqueous solutions. Ultrason Sonochem 21:2044–2051CrossRefGoogle Scholar
  45. 45.
    Hatanaka S, Hayashi S, Choi PK (2010) Sonoluminescence of Alkali-Metal atoms in sulfuric acid: comparison with that in water. Jpn J Applied Phys 49CrossRefGoogle Scholar
  46. 46.
    Xu HX, Eddingsaas NC, Suslick KS (2009) Spatial separation of cavitating bubble populations: the nanodroplet injection model. J Am Chem Soc 131:6060−+CrossRefGoogle Scholar
  47. 47.
    Thiemann A, Holsteyns F, Cairos C, Mettin R (2017) Sonoluminescence and dynamics of cavitation bubble populations in sulfuric acid. Ultrason Sonochem 34:663–676CrossRefGoogle Scholar
  48. 48.
    Sunartio D, Yasui K, Tuziuti T, Kozuka T, Iida Y, Ashokkumar M, Grieser F (2007) Correlation between Na* emission and “chemically active” acoustic cavitation bubbles. Chem Phys Chem 8:2331–2335CrossRefGoogle Scholar
  49. 49.
    Cairos C, Mettin R (2017) Simultaneous high-speed recording of sonoluminescence and bubble dynamics in multibubble fields. Phys Rev Lett 118Google Scholar
  50. 50.
    Sharipov GL, Gainetdinov RK, Abdrakhmanov AM (2003) Sonoluminescence of aqueous solutions of lanthanide salts. Russ Chem Bull 52:1969–1973CrossRefGoogle Scholar
  51. 51.
    Pflieger R, Schneider J, Siboulet B, Mohwald H, Nikitenko SI (2013) Luminescence of trivalent lanthanide ions excited by single-bubble and multibubble cavitations. J Phys Chem B 117:2979–2984CrossRefGoogle Scholar
  52. 52.
    Pflieger R, Cousin V, Barre N, Moisy P, Nikitenko SI (2012) Sonoluminescence of Uranyl ions in aqueous solutions. Chem Eur J 18:410–414CrossRefGoogle Scholar
  53. 53.
    Lee J, Ashokkumar M, Kentish S, Grieser F (2005) Determination of the size distribution of sonoluminescence bubbles in a pulsed acoustic field. J Am Chem Soc 127:16810–16811CrossRefGoogle Scholar
  54. 54.
    Brotchie A, Statham T, Zhou MF, Dharmarathne L, Grieser F, Ashokkumar M (2010) Acoustic bubble sizes, coalescence, and sonochemical activity in aqueous electrolyte solutions saturated with different gases. Langmuir 26:12690–12695CrossRefGoogle Scholar
  55. 55.
    Brotchie A, Grieser F, Ashokkumar M (2009) Effect of power and frequency on bubble-size distributions in acoustic cavitation. Phys Rev Lett 102Google Scholar
  56. 56.
    Pflieger R, Lee J, Nikitenko SI, Ashokkumar M (2015) Influence of He and Ar flow rates and NaCl concentration on the size distribution of bubbles generated by power ultrasound. J Phys Chem B 119:12682–12688CrossRefGoogle Scholar
  57. 57.
    Epstein PS, Plesset MS (1950) On the stability of gas bubbles in liquid-gas solutions. J Chem Phys 18:1505–1509CrossRefGoogle Scholar

Copyright information

© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Rachel Pflieger
    • 1
    Email author
  • Sergey I. Nikitenko
    • 1
  • Carlos Cairós
    • 2
  • Robert Mettin
    • 3
  1. 1.Marcoule Institute for Separation Chemistry, ICSM UMR5257, CEA, CNRSUniversity of Montpellier, ENSCMBagnols-sur-Cèze CedexFrance
  2. 2.Department of Analytical ChemistryUniversity of La LagunaLa Laguna, TenerifeSpain
  3. 3.Third Institute of PhysicsGeorg-August-University GöttingenGöttingenGermany

Personalised recommendations