Computational Versus Experimental Spectroscopy for Transition Metals

  • Maja Gruden
  • Wesley R. Browne
  • Marcel SwartEmail author
  • Carole Duboc
Part of the Challenges and Advances in Computational Chemistry and Physics book series (COCH, volume 29)


Knowledge of the electronic structure of transition-metal complexes is increasingly being obtained through joint efforts by theory and experiments. Here, we describe a variety of examples where spectroscopy is being used to determine, e.g., the oxidation state, spin state, or coordination environment around redox-active metal ions such as iron, manganese, or nickel. Both enzymatic and biomimetic systems are included, from the literature and from our own laboratories. It is shown that the combined efforts of wet and dry laboratories lead to a more profound understanding, and allows for systematic exploration of coordinate chemistry around the central metal atom.


Spectroscopy Synthesis Catalysis Theory 



The COST association action CM1305 ECOSTBio (STSM grant 34080), the European Research Council (ERC 279549, WRB), the labex arcane (ANR-11-LABX-003), MINECO (CTQ2014-59212-P, CTQ2015-70851-ERC, CTQ2017-87392-P, MS), GenCat (2014SGR1202, MS), FEDER (UNGI10-4E-801, MS), and the Serbian Ministry of Science (Grant No. 172035) are acknowledged for financial support.


  1. 1.
    Swart M, Costas M (eds) (2015) Spin states in biochemistry and inorganic chemistry: influence on structure and reactivity. Wiley, Oxford.
  2. 2.
    Que Jr L (2000) Physical methods in bioinorganic chemistry. University Science BooksGoogle Scholar
  3. 3.
    Crichton R, Louro R (2013) Practical approaches to biological inorganic chemistry. ElsevierGoogle Scholar
  4. 4.
    Ray K, Duboc C (2018) ECOSTBio: explicit control over spin states in technology and biochemistry. Chem Eur J 24:5003–5005.
  5. 5.
    Bergeler M, Stiebritz MT, Reiher M (2013) Structure–property relationships of Fe4S4 clusters. ChemPlusChem 78:1082–1098Google Scholar
  6. 6.
    Carvalho ATP, Swart M (2014) Electronic structure investigation and parameterization of biologically relevant iron-sulfur clusters. J Chem Inf Model 54:613–620CrossRefGoogle Scholar
  7. 7.
    Sharma S, Sivalingam K, Neese F, Chan GK-L (2014) Low-energy spectrum of iron–sulfur clusters directly from many-particle quantum mechanics. Nat Chem 6:927–933.
  8. 8.
    Kim J, Rees DC (1992) Structural models for the metal centers in the nitrogenase molybdenum-iron protein. Science 257:1677–1682. Scholar
  9. 9.
    Einsle O, Tezcan FA, Andrade SLA, Schmid B, Yoshida M, Howard JB, Rees DC (2002) Nitrogenase MoFe-protein at 1.16 Å resolution: a central ligand in the FeMo-cofactor. Science 297:1696–1700.
  10. 10.
    Ramaswamy S (2011) One atom makes all the difference. Science 334:914–915. Scholar
  11. 11.
    Spatzal T et al (2011) Evidence for interstitial carbon in nitrogenase FeMo cofactor. Science 334:940–940. Scholar
  12. 12.
    Yang T-C, Maeser NK, Laryukhin M, Lee H-I, Dean DR, Seefeldt LC, Hoffman BM (2005) The interstitial atom of the nitrogenase FeMo-cofactor: ENDOR and ESEEM evidence that it is not a nitrogen. J Am Chem Soc 127:12804–12805. Scholar
  13. 13.
    Lancaster KM et al (2011) X-Ray emission spectroscopy evidences a central carbon in the nitrogenase iron-molybdenum cofactor. Science 334:974–977. Scholar
  14. 14.
    Bjornsson R et al (2014) Identification of a spin-coupled Mo(III) in the nitrogenase iron–molybdenum cofactor. Chem Sci 5:3096–3103.
  15. 15.
    Sippel D et al (2018) A bound reaction intermediate sheds light on the mechanism of nitrogenase. Science 359:1484–1489. Scholar
  16. 16.
    Cao L, Ryde U (2018) Influence of the protein and DFT method on the broken-symmetry and spin states in nitrogenase. Int J Quantum Chem 118:e25627. Scholar
  17. 17.
    Cao L, Caldararu O, Ryde U (2017) Protonation states of homocitrate and nearby residues in nitrogenase studied by computational methods and quantum refinement. J Phys Chem B 121:8242–8262. Scholar
  18. 18.
    Siegbahn PEM (2018) A major structural change of the homocitrate ligand of probable importance for the nitrogenase mechanism. Inorg Chem 57:1090–1095. Scholar
  19. 19.
    Siegbahn PEM (2016) Model calculations suggest that the central carbon in the femo-cofactor of nitrogenase becomes protonated in the process of nitrogen fixation. J Am Chem Soc 138:10485–10495. Scholar
  20. 20.
    Siegbahn PEM (2018) Is there computational support for an unprotonated carbon in the E4 state of nitrogenase? J Comput Chem 39:743–747. Scholar
  21. 21.
    Dau H, Iuzzolino L, Dittmer J (2001) The tetra-manganese complex of photosystem II during its redox cycle—X-ray absorption results and mechanistic implications. BBA-Bioenergetics 1503:24–39.
  22. 22.
    Krewald V et al (2015) Metal oxidation states in biological water splitting. Chem Sci 6:1676–1695PubMedGoogle Scholar
  23. 23.
    Rohde JU et al (2003) Crystallographic and spectroscopic characterization of a nonheme Fe(IV)-O complex. Science 299:1037–1039.
  24. 24.
    Fukuzumi S, Morimoto Y, Kotani H, Naumov P, Lee Y-M, Nam W (2010) Crystal structure of a metal ion-bound oxoiron(IV) complex and implications for biological electron transfer. Nat Chem 2:756–759.
  25. 25.
    McDonald AR, Que Jr L (2013) High-valent nonheme iron-oxo complexes: synthesis, structure, and spectroscopy. Coord Chem Rev 257:414–428.
  26. 26.
    Swart M (2013) A change in oxidation state of iron: scandium is not innocent. Chem Commun 49:6650–6652. Scholar
  27. 27.
    Swart M (2008) Accurate spin-state energies for iron complexes. J Chem Theory Comp 4:2057–2066Google Scholar
  28. 28.
    Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximations made simple. Phys Rev Lett 77:3865–3868CrossRefGoogle Scholar
  29. 29.
    Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787–1799CrossRefGoogle Scholar
  30. 30.
    Swart M, Solà M, Bickelhaupt FM (2009) A new all-round DFT functional based on spin states and SN2 barriers. J Chem Phys 131:094103Google Scholar
  31. 31.
    Han W-G, Liu T, Lovell T, Noodleman L (2006) DFT calculations of 57Fe Mössbaurer isomer shifts and quadrupole splittings for iron complexes in polar dielectric media: applications to methane monooxygenase and ribonucleotide reductase. J Comput Chem 27:1292–1306Google Scholar
  32. 32.
    Güell M, Solà M, Swart M (2010) Spin-state splittings of iron(II) complexes with trispyrazolyl ligands. Polyhedron 29:84–93.
  33. 33.
    MacBeth CE et al (2004) Utilization of hydrogen bonds to stabilize M-O(H) units: synthesis and properties of monomeric iron and manganese complexes with terminal oxo and hydroxo ligands. J Am Chem Soc 126:2556–2567.
  34. 34.
    Cho J et al (2011) Structure and reactivity of a mononuclear non-haem iron(III)–peroxo complex. Nature 478:502–505Google Scholar
  35. 35.
    Swart M, Gruden M (2016) Spinning around in transition-metal chemistry. Acc Chem Res 49:2690–2697. Scholar
  36. 36.
    Zhou A, Kleespies ST, Van Heuvelen KM, Que Jr L (2015) Characterization of a heterobimetallic nonheme Fe(III)–O–Cr(III) species formed by O2 activation. Chem Commun 51:14326–14329.
  37. 37.
    Prakash J, Rohde GT, Meier KK, Münck E, Que Jr L (2015) Upside down! Crystallographic and spectroscopic characterization of an [FeIV(Osyn)(TMC)]2+ complex. Inorg Chem 54:11055–11057.
  38. 38.
    Ray K, England J, Fiedler AT, Martinho M, Münck E, Que Jr L (2008) An inverted and more oxidizing isomer of [Fe(IV)(O)(tmc)(NCCH3)]2+. Angew Chem Int Ed 47:8068–8071.
  39. 39.
    Zhou A et al (2017) The two faces of tetramethylcyclam in iron chemistry: distinct Fe−O−M complexes derived from [FeIV(Oanti/syn)(TMC)]2+ isomers. Inorg Chem 56:518–527.
  40. 40.
    Padamati SK et al (2017) Transient formation and reactivity of a high-valent nickel(IV) oxido complex. J Am Chem Soc 139:8718–8724.
  41. 41.
    Wieghardt K et al (1988) Synthesis, crystal structures, reactivity, and magnetochemistry of a series of binuclear complexes of manganese(II), -(III), and -(IV) of biological relevance. The crystal structure of [L′MnIV(m-O)3MnIVL′](PF6)2·H2O containing an unprecedented short Mn···Mn distance of 2.296 Å. J Am Chem Soc 110:7398–7411.
  42. 42.
    Neubold P, Della Vedova BSPC, Wieghardt K, Nuber B, Weiss J (1990) Novel cofacial bioctahedral complexes of ruthenium: syntheses and properties of the mixed-valence species [LRu2.5(.mu.-X)3Ru2.5L]2 + (X = Cl, Br, I, OH). Crystal structures of [LRu2.5(.mu.-OH)3Ru2.5L](PF6)2.cntdot.H2O and [LRuIV(.mu.-O)3RuIVL](PF6)2.cntdot.H2O (L = 1,4,7-trimethyl-1,4,7-triazacyclononane). Inorg Chem 29:3353–3363.
  43. 43.
    Rohde J-U et al. (2004) Structural insights into nonheme alkylperoxoiron(III) and oxoiron(IV) intermediates by X-ray absorption spectroscopy. J Am Chem Soc 126:16750–16761.
  44. 44.
    Pirovano P, Farquhar E, Swart M, Fitzpatrick AJ, Morgan GG, McDonald AR (2015) Characterization and reactivity of a terminal nickel(III)-oxygen adduct. Chem Eur J 21:3785–3790.
  45. 45.
    Pirovano P, Farquhar ER, Swart M, McDonald AR (2016) Tuning the reactivity of terminal nickel(III)–oxygen adducts for C–H bond activation. J Am Chem Soc 138:14362–14370.
  46. 46.
    Gatteschi D, Sessoli R, Villain J (2006) Molecular nanomagnets. Oxford University Press, New-YorkCrossRefGoogle Scholar
  47. 47.
    Mannini M et al (2009) Magnetic memory of a single-molecule quantum magnet wired to a gold surface. Nat Mater 8:194–197. Scholar
  48. 48.
    Bogani L, Wernsdorfer W (2008) Molecular spintronics using single-molecule magnets. Nat Mater 7:179–186. Scholar
  49. 49.
    Craig GA, Murrie M (2015) 3d single-ion magnets. Chem Soc Rev 44:2135–2142.
  50. 50.
    Frost JM, Harriman KLM, Murugesu M (2016) The rise of 3-d single-ion magnets in molecular magnetism: towards materials from molecules? Chem Sci 7:2470–2491. Scholar
  51. 51.
    Waldmann O (2007) A criterion for the anisotropy barrier in single-molecule magnets. Inorg Chem 46:10035–10037. Scholar
  52. 52.
    Neese F, Pantazis DA (2011) What is not required to make a single molecule magnet. Faraday Discuss 148:229–238. Scholar
  53. 53.
    Duboc C, Gennari M (2015) Experimental techniques for determining spin states. In: Spin states in biochemistry and inorganic chemistry. Wiley, pp 59–83.
  54. 54.
    Neese F (2006) Importance of direct spin-spin coupling and spin-flip excitations for the zero-field splitting of transition metal complexes: a case study. J Am Chem Soc 128:10213–10222.
  55. 55.
    Sousa C, de Graaf C (2015) Ab initio wavefunction approaches to spin states. In: Spin states in biochemistry and inorganic chemistry. Wiley, pp 35–57.
  56. 56.
    Daul CA, Zlatar M, Gruden-Pavlovic M, Swart M (2015) Application of density functional and density functional based ligand field theory to spin states. In: Spin states in biochemistry and inorganic chemistry. Wiley, pp 7–34.
  57. 57.
    Pederson MR, Khanna SN (1999) Magnetic anisotropy barrier for spin tunneling in Mn12O12 molecules. Phys Rev B 60:9566–9572Google Scholar
  58. 58.
    Neese F, Solomon EI (1998) Calculation of zero-field splittings, g-values, and the relativistic nephelauxetic effect in transition metal complexes. Application to high-spin ferric complexes. Inorg Chem 37:6568–6582CrossRefGoogle Scholar
  59. 59.
    Atanasov M, Daul CA, Rauzy C (2003) New insights into the effects of covalency on the ligand field parameters: a DFT study. Chem Phys Lett 367:737–746. Scholar
  60. 60.
    Sessoli R, Gatteschi D, Caneschi A, Novak MA (1993) Magnetic bistability in a metal-ion cluster. Nature 365:141–143Google Scholar
  61. 61.
    Duboc C, Ganyushin D, Sivalingam K, Collomb M-N, Neese F (2010) Systematic theoretical study of the zero-field splitting in coordination complexes of Mn(III). Density functional theory versus multireference wave function approaches. J Phys Chem A 114:10750–10758. Scholar
  62. 62.
    Duboc C (2016) Determination and prediction of the magnetic anisotropy of Mn ions. Chem Soc Rev 45:5834–5847. Scholar
  63. 63.
    Zlatar M et al (2016) Origin of the zero-field splitting in mononuclear octahedral MnIV complexes: a combined experimental and theoretical investigation. Inorg Chem 55:1192–1201. Scholar
  64. 64.
    Leto DF, Massie AA, Colmer HE, Jackson TA (2016) X-Band electron paramagnetic resonance comparison of mononuclear MnIV-oxo and MnIV-hydroxo complexes and quantum chemical investigation of MnIV zero-field splitting. Inorg Chem 55:3272–3282. Scholar
  65. 65.
    Barra AL, Gatteschi D, Sessoli R, Abbati GL, Cornia A, Fabretti AC, Uytterhoeven MG (1997) Electronic structure of manganese(III) compounds from high-frequency EPR spectra. Angew Chem Int Ed 36:2329–2331Google Scholar
  66. 66.
    Goldberg DP, Telser J, Krzystek J, Montalban AG, Brunel L-C, Barrett AGM, Hoffman BM (1997) EPR spectra from “EPR-silent” species:  high-field EPR spectroscopy of manganese(III) porphyrins. J Am Chem Soc 119:8722–8723.
  67. 67.
    Duboc C, Collomb MN (2009) Multifrequency high-field EPR investigation of a mononuclear manganese(IV) complex. Chem Commun 2715–2717.
  68. 68.
    Brazzolotto D et al (2016) An experimental and theoretical investigation on pentacoordinated cobalt(III) complexes with an intermediate S = 1 spin state: how halide ligands affect their magnetic anisotropy. Chem Eur J 22:925–933.
  69. 69.
    Wang LK et al (2018) Experimental and theoretical identification of the origin of magnetic anisotropy in intermediate spin iron(III) complexes. Chem Eur J 24:5091–5094.
  70. 70.
    Duboc C, Phoeung T, Zein S, Pécaut J, Collomb MN, Neese F (2007) Origin of the zero-field splitting in mononuclear octahedral dihalide Mn-II complexes: an investigation by multifrequency high-field electron paramagnetic resonance and density functional theory. Inorg Chem 46:4905–4916. Scholar
  71. 71.
    Ruamps R et al (2013) Giant Ising-type magnetic anisotropy in trigonal bipyramidal Ni(ii) complexes: experiment and theory. J Am Chem Soc 135:3017–3026.
  72. 72.
    Gruden-Pavlovic M, Peric M, Zlatar M, Garcia-Fernandez P (2014) Theoretical study of the magnetic anisotropy and magnetic tunnelling in mononuclear Ni(II) complexes with potential molecular magnet behavior. Chem Sci 5:1453–1462.
  73. 73.
    Groom CR, Bruno IJ, Lightfoot MP, Ward SC (2016) The Cambridge structural database. Acta Cryst B 72:171–179.
  74. 74.
    Rozell WJ, Wood JS (1977) Crystal and molecular-structures of 5-coordinate complexes [Ni(LCH3)2Cl3]ClO4 and [Cu(LCH3)2Cl3]ClO4, where L+CH3 = N-methyl-1,4-diazabicyclo[2.2.2]octonium ion. Inorg Chem 16:1827–1833.
  75. 75.
    Pritchard RG, Ali M, Munim A, Uddin A (2006) Effedcts d-orbital occupancy on the geometry of the trigonal-bipyramidal complexes (MCl3)-Cl-II(Hdabco)(dabco) (n), where M is Mn, Co, Ni or Cu and dabco is 1,4-diazabicyclo 2.2.2-octane. Acta Crystallogr Sect C Crystal Struct Commun 62:M507–M509.
  76. 76.
    Marriott KER, Bhaskaran L, Wilson C, Medarde M, Ochsenbein ST, Hill S, Murrie M (2015) Pushing the limits of magnetic anisotropy in trigonal bipyramidal Ni(ii). Chem Sci 6:6823–6828.
  77. 77.
    Nemec I, Herchel R, Svoboda I, Boca R, Travnicek Z (2015) Large and negative magnetic anisotropy in pentacoordinate mononuclear Ni(II) Schiff base complexes. Dalton Trans 44:9551–9560.

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Maja Gruden
    • 1
  • Wesley R. Browne
    • 2
  • Marcel Swart
    • 3
    • 4
    Email author
  • Carole Duboc
    • 5
  1. 1.Faculty of ChemistryUniversity of BelgradeBelgradeSerbia
  2. 2.Faculty of Science and EngineeringStratingh Institute for ChemistryGroningenThe Netherlands
  3. 3.ICREABarcelonaSpain
  4. 4.IQCC, Universitat de GironaGironaSpain
  5. 5.Departement de Chimie MoleculaireUniversity Grenoble Alpes, CNRS, DCMGrenobleFrance

Personalised recommendations