Advertisement

Catalytic Properties of Selected Transition Metal Oxides—Computational Studies

  • Witold PiskorzEmail author
  • Filip Zasada
Chapter
Part of the Challenges and Advances in Computational Chemistry and Physics book series (COCH, volume 29)

Abstract

This chapter is the review of the computational methods applied to the transition metal oxides most abundant in heterogeneous catalysis and is focused on the influence of the environment on the transition metal cation properties. The shortcomings of the most commonly used DFT level of theory are discussed, and its extensions towards more realistic environment are presented. The modern reactive force-field methods are also mentioned. The embedding schemes most commonly found in the quantum-chemical or classical description of the heterogeneous processes are discussed. The errors stemming from the non-completeness of the basis function, i.e. the basis set superposition error, found in the calculations with atomic basis, and the Pulay stress, occurring in the planewave calculations, together with remedies, are briefly described. It is shown that in all discussed systems, i.e. \( {\mathrm {CeO}}_{2}\), \({\mathrm {TiO}}_{2}\), \({\mathrm {ZrO}}_{2}\), zeolites, d-electron metal spinels, and \({\mathrm {V}}_{2}\mathrm{O}_{5}\), the appropriately applied Hubbard DFT GGA+U methods are successful for the compromise between computational cost and resultant accuracy. The much more time-consuming hybrid functionals give slightly more accurate results and, moreover, are more universal in the sense that they do not need calibration against experiment contrary to DFT+U where the Hubbard correction needs to be carefully selected for modelling particular properties.

Keywords

Transition metal oxides Computational chemistry Catalysis DFT 

Notes

Acknowledgements

The present work was in part funded by the National Science Centre (grant 2016/23/B/ST4/00088). Part of the calculations were performed in the Cyfronet PL-Grid supercomputer centre in Kraków.

References

  1. 1.
    Hartwig JF (2010) Organotransition metal chemistry: from bonding to catalysis. University Science Books, SausalitoGoogle Scholar
  2. 2.
    Fajardo J, Peters JC (2017) J Am Chem Soc 139(45):16105.  https://doi.org/10.1021/jacs.7b10204
  3. 3.
    Bethe H (1929) Annalen der Physik 395(2):133.  https://doi.org/10.1002/andp.19293950202
  4. 4.
    Miessler GL, Fischer PJ, Tarr DA, (2014) Inorg Chem. PearsonGoogle Scholar
  5. 5.
    Barteau MA (1996) Chem Rev 96(4):1413.  https://doi.org/10.1021/cr950222t
  6. 6.
    Hohenberg P, Kohn W (1964) Phys Rev 136(3B):B864 (1964). https://link.aps.org/doi/10.1103/PhysRev.136.B864
  7. 7.
  8. 8.
    Ceperley DM, Alder BJ (1980) Phys Rev Lett 45(7):566. http://escholarship.org/uc/item/2d7023jm.pdf
  9. 9.
    Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77(18):3865.  https://doi.org/10.1103/PhysRevLett.77.3865
  10. 10.
    Hammer B, Hansen LB, Nørskov JK (1999) Phys Rev B 59(11):7413. https://link.aps.org/doi/10.1103/PhysRevB.59.7413
  11. 11.
  12. 12.
    Hood RQ, Chou M, Williamson A, Rajagopal G, Needs R (1998) Phys Rev B Condens Matter Mater Phys 57(15):8972.  https://doi.org/10.1103/PhysRevB.57.8972. https://link.aps.org/doi/10.1103/PhysRevB.57.8972
  13. 13.
    Jones RO (2006) In: Grotendorst J, Blügel, Marx D (eds) Computational nanoscience: do it yourself! (John von Neumann Institute for Computing, Jülich 2006), Chap 31, pp 45–70.  https://doi.org/10.1007/978-3-642-86105-5
  14. 14.
    Dreizler RM, Gross EKU (1990) Density functional theory. Springer.  https://doi.org/10.1007/978-3-642-86105-5. https://link.springer.com/book/10.1007/978-3-642-86105-5
  15. 15.
    Sodupe M, Bertran J, Rodriguez-Santiago L, Baerends EJ (1999) J Phys Chem A 103(1):166.  https://doi.org/10.1021/jp983195u
  16. 16.
    de I, Moreira PR, Illas F, Martin RL (2002) Phys Rev B Condens Matter Mater Phys 65(15):1551021.  https://doi.org/10.1103/PhysRevB.65.155102. https://link.aps.org/doi/10.1103/PhysRevB.65.155102
  17. 17.
  18. 18.
    Himmetoglu B, Floris A, De Gironcoli S, Cococcioni M (2014) Int J Quantum Chem 114(1):14. http://doi.wiley.com/10.1002/qua.24521
  19. 19.
    Anisimov VI, Zaanen J, Andersen OK (1991) Phys Rev B 44(3):943. https://link.aps.org/doi/10.1103/PhysRevB.44.943
  20. 20.
    Anisimov VI, Aryasetiawan F, Liechtenstein A (1997) J Phys Condens Matter 9(4):767.  https://doi.org/10.1088/0953-8984/9/4/002. http://stacks.iop.org/0953-8984/9/i=4/a=002?key=crossref.fb949d5eca1b7900b10858389e3ab0c7
  21. 21.
    Cococcioni M (2012) In: Pavarini E, Koch E, Anders F, Jarrell M (eds) Correlated electrons: from models to materials modeling and simulation, Chap. 4. Forschungszentrum, Juelich, p. 40. http://www.cond-mat.de/events/correl12
  22. 22.
    Dudarev SL, Botton GA, Savrasov SY, Humphreys CJ, Sutton AP (1998) Phys Rev B 57(3):1505.  https://doi.org/10.1103/PhysRevB.57.1505. https://link.aps.org/doi/10.1103/PhysRevB.57.1505
  23. 23.
    Faber C, Boulanger P, Duchemin I, Attaccalite C, Blase X (2013) J Chem Phys 139(19):194308.  https://doi.org/10.1063/1.4830236. https://doi.org/10.1063/1.4830236
  24. 24.
    Aryasetiawan F, Gunnarsson O (1998) Rep Prog Phys 61(3):237 (1998). http://stacks.iop.org/0034-4885/61/i=3/a=002
  25. 25.
  26. 26.
    Loschen C, Carrasco J, Neyman KM, Illas F (2011) Phys Rev B 84:199906.  https://doi.org/10.1103/PhysRevB.75.035115
  27. 27.
    Da Silva JL, Ganduglia-Pirovano MV, Sauer J, Bayer V, Kresse G (2007) Phys Rev B Condens Matter Mater Phys 75(4):45121.  https://doi.org/10.1103/PhysRevB.75.045121. https://link.aps.org/doi/10.1103/PhysRevB.75.045121
  28. 28.
    Ganduglia-Pirovano MV, Da Silva JLF, Sauer J (2009) Phys Rev Lett 102(2):026101.  https://doi.org/10.1103/PhysRevLett.102.026101. https://link.aps.org/doi/10.1103/PhysRevLett.102.026101
  29. 29.
    Jiang H, Gomez-Abal RI, Rinke P, Scheffler M (2009) Phys Rev Lett 102(12):126403.  https://doi.org/10.1103/PhysRevLett.102.126403. http://link.aps.org/doi/10.1103/PhysRevLett.102.126403
  30. 30.
    Pacchioni G (2015) In: Jupille J, Thornton G (eds) Defects at oxide surfaces. Chap 1.3 Proble, Springer series in surface sciences, vol 58. Springer International Publishing, Cham, p 472.  https://doi.org/10.1007/978-3-319-14367-5. https://link.springer.com/book/10.1007/978-3-319-14367-5
  31. 31.
  32. 32.
    Marques MAL, Ullrich CA, Nogueira F, Rubio A, Burke K, Gross EKU, (2006) Time-dependent density functional theory. Lecture notes in physics, vol 706. Springer, Heidelberg.  https://doi.org/10.1007/b11767107. http://link.springer.com/10.1007/b11767107
  33. 33.
    Casida ME, Huix-Rotllant M (2015) Springer International Publishing, Cham pp 1–60.  https://doi.org/10.1007/128_2015_632. https://link.springer.com/chapter/10.1007/128_2015_632
  34. 34.
    Wu X, Vargas MC, Nayak S (2001) J Chem Phys 115(19):8748.  https://doi.org/10.1063/1.1412004. https://doi.org/10.1063/1.1412004
  35. 35.
    Grimme S (2004) J Computat Chem 25(12):1463.  https://doi.org/10.1002/jcc.20078. http://doi.wiley.com/10.1002/jcc.20078
  36. 36.
    Grimme S (2006) J Computat Chem 27(15):1787.  https://doi.org/10.1002/jcc.20495. http://doi.wiley.com/10.1002/jcc.20495
  37. 37.
    Grimme S, Antony J, Ehrlich S, Krieg H (2010) J Chem Phys 132(15):154104.  https://doi.org/10.1063/1.3382344. https://doi.org/10.1063/1.3382344
  38. 38.
    Smith DGA, Burns LA, Patkowski K, Sherrill CD (2016) J Phys Chem Lett 7(12):2197.  https://doi.org/10.1021/acs.jpclett.6b00780. https://doi.org/10.1021/acs.jpclett.6b00780
  39. 39.
    Reckien W, Janetzko F, Peintinger MF, Bredow T (2012) J Comput Chem 33(25):2023.  https://doi.org/10.1002/jcc.23037. https://onlinelibrary.wiley.com/doi/10.1002/jcc.23037
  40. 40.
    Dion M, Rydberg H, Schröder E, Langreth DC, Lundqvist BI (2004) Phys Rev Lett 92(24):246401.  https://doi.org/10.1103/PhysRevLett.92.246401. https://link.aps.org/doi/10.1103/PhysRevLett.92.246401
  41. 41.
    Dion M, Rydberg H, Schröder E, Langreth DC, Lundqvist BI (2005) Phys Rev Lett 95(10), 109902. https://link.aps.org/doi/10.1103/PhysRevLett.95.109902
  42. 42.
    Klimes J, Bowler DR, Michaelides A (2011) Phys Rev B Condens Matter Mater Phys 83(19):195131.  https://doi.org/10.1103/PhysRevB.83.195131. https://link.aps.org/doi/10.1103/PhysRevB.83.195131
  43. 43.
    Santra B, Michaelides A, Fuchs M, Tkatchenko A, Filippi C, Scheffler M (2008) J Chem Phys 129(19):194111  https://doi.org/10.1063/1.3012573. https://doi.org/10.1063/1.3012573
  44. 44.
    Gulans A, Puska M, Nieminen R (2009) Phys Rev B 79(20):201105.  https://doi.org/10.1103/PhysRevB.79.201105. https://link.aps.org/doi/10.1103/PhysRevB.79.201105
  45. 45.
    Senftle TP, Hong S, Islam MM, Kylasa SB, Zheng Y, Shin YK, Junkermeier C, Engel-Herbert R, Janik MJ, Aktulga HM, Verstraelen T, Grama A, van Duin ACT (2016) NPJ Comput Mater 2(1):15011.  https://doi.org/10.1038/npjcompumats.2015.11. http://www.nature.com/articles/npjcompumats201511
  46. 46.
  47. 47.
    Maseras F, Morokuma K (1995) J Comput Chem 16(9):1170.  https://doi.org/10.1002/jcc.540160911. http://doi.wiley.com/10.1002/jcc.540160911
  48. 48.
    Humbel S, Sieber S, Morokuma K (1998) J Chem Phys 105(5):1959.  https://doi.org/10.1063/1.472065. https://aip.scitation.org/doi/abs/10.1063/1.472065
  49. 49.
    Svensson M, Humbel S, Froese RDJ, Matsubara T, Sieber S, Morokuma K (1996) J Phys Chem 100(50):19357.  https://doi.org/10.1021/jp962071j. http://pubs.acs.org/doi/abs/10.1021/jp962071j
  50. 50.
  51. 51.
    Boys SF (1950) Proc R Soc Lond Ser A Math Phys Sci 200(1063):542 LP. http://rspa.royalsocietypublishing.org/content/200/1063/542.abstract
  52. 52.
    Huzinaga S (1984) Gaussian basis sets for molecular calculations. Elsevier, AmsterdamGoogle Scholar
  53. 53.
  54. 54.
    te Velde G, Bickelhaupt FM, Baerends EJ, Fonseca Guerra C, van Gisbergen SJ, Snijders JG, Ziegler T (2001) J Comput Chem 22(9):931.  https://doi.org/10.1002/jcc.1056. http://doi.wiley.com/10.1002/jcc.1056
  55. 55.
    Delley B (2000) J Chem Phys 113(18):7756.  https://doi.org/10.1063/1.1316015. https://doi.org/10.1063/1.1316015
  56. 56.
  57. 57.
    Mostofi AA, Yates JR, Pizzi G, Lee YS, Souza I, Vanderbilt D, Marzari N (2014) Comput Phys Commun 185(8):2309.  https://doi.org/10.1016/j.cpc.2014.05.003. https://www.sciencedirect.com/science/article/pii/S001046551400157X?via%3Dihub
  58. 58.
  59. 59.
    Mortensen JJ, Hansen LB, Jacobsen KW (2005) Phys Rev B 71(3):035109.  https://doi.org/10.1103/PhysRevB.71.035109. https://link.aps.org/doi/10.1103/PhysRevB.71.035109
  60. 60.
  61. 61.
    Bader RFW (1990) Atoms in molecules—a quantum theory. Oxford University Press, OxfordGoogle Scholar
  62. 62.
    Henkelman G, Arnaldsson A, Jónsson H (2006) Comput Mater Sci 36(3):354.  https://doi.org/10.1016/J.COMMATSCI.2005.04.010. https://www.sciencedirect.com/science/article/pii/S0927025605001849
  63. 63.
    Manz TA, Limas NG (2016) RSC Adv 6(53):47771.  https://doi.org/10.1039/C6RA04656H. http://dx.doi.org/10.1039/C6RA04656H
  64. 64.
    Limas NG, Manz TA (2016) RSC Adv 6(51):45727.  https://doi.org/10.1039/C6RA05507A. http://dx.doi.org/10.1039/C6RA05507A
  65. 65.
  66. 66.
    Kerisit S, Rosso KM, Yang Z, Liu J (2010) J Phys Chem C 114(44):19096.  https://doi.org/10.1021/jp103809s. http://pubs.acs.org/doi/10.1021/jp103809s
  67. 67.
    Arsentev M, Hammouri M, Kovalko N, Kalinina M, Petrov A (2017) Comput Mater Sci 140:181.  https://doi.org/10.1016/J.COMMATSCI.2017.08.045. https://www.sciencedirect.com/science/article/pii/S0927025617304676
  68. 68.
  69. 69.
  70. 70.
    Godlewski S, Tekiel A, Piskorz W, Zasada F, Prauzner-Bechcicki JS, Sojka Z, Szymonski M (2012) ACS Nano 6(10):8536.  https://doi.org/10.1021/nn303546m
  71. 71.
    Hofer WA, Foster AS, Shluger AL (2003) Rev Mod Phys 75(4):1287.  https://doi.org/10.1103/RevModPhys.75.1287. https://link.aps.org/doi/10.1103/RevModPhys.75.1287
  72. 72.
    Wulff G (1901) Zeitschrift für Krystallographie und Mineralogie 34(5/6):449Google Scholar
  73. 73.
    Reuter K, Scheffler M (2003) Phys Rev B Condens Matter Mater Phys 68(4):045407.  https://doi.org/10.1103/PhysRevB.68.045407. https://link.aps.org/doi/10.1103/PhysRevB.68.045407
  74. 74.
    Geysermans P, Finocchi F, Goniakowski J, Hacquart R, Jupille J (2009) Phys Chem Chem Phys 11(13):2228.  https://doi.org/10.1039/b812376d. http://xlink.rsc.org/?DOI=b812376d
  75. 75.
  76. 76.
    Mathew K, Sundararaman R, Letchworth-Weaver K, Arias TA, Hennig RG (2014) J Chem Phys 140(8):84106.  https://doi.org/10.1063/1.4865107. https://doi.org/10.1063/1.4865107
  77. 77.
    Letchworth-Weaver K, Arias TA (2012) Phys Rev B Condens Matter Mater Phys 86(7):75140.  https://doi.org/10.1103/PhysRevB.86.075140. https://link.aps.org/doi/10.1103/PhysRevB.86.075140
  78. 78.
    Piskorz W, Zasada F, Stelmachowski P, Diwald O, Kotarba A, Sojka Z (2011) J Phys Chem C 115(45):22451.  https://doi.org/10.1021/jp2070826
  79. 79.
    Piskorz W, Zasada F, Stelmachowski P, Kotarba A, Sojka Z (2013) J Phys Chem C 117(36):18488.  https://doi.org/10.1021/jp405459g
  80. 80.
    Puigdollers AR, Schlexer P, Tosoni S, Pacchioni G (2017) ACS Catal 7(10):6493.  https://doi.org/10.1021/acscatal.7b01913. https://doi.org/10.1021/acscatal.7b01913
  81. 81.
    Paier J, Penschke C, Sauer J (2013) Chem Rev 113(6):3949.  https://doi.org/10.1021/cr3004949. https://doi.org/10.1021/cr3004949
  82. 82.
  83. 83.
    Zasada F, Janas J, Piskorz W, Sojka Z (2017) Res Chem Intermed 43(5):2865.  https://doi.org/10.1007/s11164-016-2798-y
  84. 84.
    Trovarelli A, Fornasiero P (2013) Catalysis by ceria and related materials, 2nd edn. Imperial College Press, LondonGoogle Scholar
  85. 85.
  86. 86.
    Huang W, Gao Y (2014) Catal Sci Technol 4(11):3772.  https://doi.org/10.1039/C4CY00679H. http://dx.doi.org/10.1039/C4CY00679H
  87. 87.
  88. 88.
    Yao HC, Yao YF (1984) J Catal 86(2):254.  https://doi.org/10.1016/0021-9517(84)90371-3
  89. 89.
  90. 90.
  91. 91.
    Fu Q, Saltsburg H, Flytzani-Stephanopoulos M (2003) Science 301(5635):935.  https://doi.org/10.1126/science.1085721
  92. 92.
    Deng W, Flytzani-Stephanopoulos M (2006) Angew Chem Int Edn 45(14):2285.  https://doi.org/10.1002/anie.200503220. http://dx.doi.org/10.1002/anie.200503220
  93. 93.
    Yu EH, Wang X, Liu XT, Li L (2013) In: Liang ZX, Zhao TS (eds) Catalysts for alcohol-fuelled direct oxidation fuel cells. Energy and environment series. The Royal Society of Chemistry, Cambridge, pp 227–249.  https://doi.org/10.1039/9781849734783. http://dx.doi.org/10.1039/9781849734783
  94. 94.
    Park S, Vohs JM, Gorte RJ (2000) Nature 404(6775):265.  https://doi.org/10.1038/35005040
  95. 95.
    Delgado JJ, del Río E, Chen X, Blanco G, Pintado JM, Bernal S, Calvino JJ (2013) In: Trovarelli A, Fornasiero P 2nd (edn) Catalysis by ceria and related materials. Imperial College Press, pp 47–138Google Scholar
  96. 96.
    Farrauto R, Hwang S, Shore L, Ruettinger W, Lampert J, Giroux T, Liu Y, Ilinich O (2003) Annu Rev Mater Res 33(1):1.  https://doi.org/10.1146/annurev.matsci.33.022802.091348. http://www.annualreviews.org/doi/10.1146/annurev.matsci.33.022802.091348
  97. 97.
  98. 98.
    Capdevila-Cortada M, Vilé G, Teschner D, Pérez-Ramírez J, López N (2016) Appl Catal B Environ 197:299.  https://doi.org/10.1016/j.apcatb.2016.02.035. https://www.sciencedirect.com/science/article/pii/S0926337316301242
  99. 99.
    Trovarelli A (2002) Catalysis by ceria and related materials. Imperial College PressGoogle Scholar
  100. 100.
    Xiong YP, Kishimoto H, Yamaji K, Yoshinaga M, Horita T, Brito ME, Yokokawa H (2011) Solid State Ion 192(1):476.  https://doi.org/10.1016/j.ssi.2010.07.017. https://www.sciencedirect.com/science/article/pii/S0167273810004157
  101. 101.
    Ganduglia-Pirovano MV, Hofmann A, Sauer J (2007) Surface Sci Rep 62(6):219.  https://doi.org/10.1016/j.surfrep.2007.03.002. https://www.sciencedirect.com/science/article/pii/S0167572907000295
  102. 102.
  103. 103.
    Yang Z, Woo TK, Baudin M, Hermansson K (2004) J Chem Phys 120(16):7741.  https://doi.org/10.1063/1.1688316. http://aip.scitation.org/doi/10.1063/1.1688316
  104. 104.
    Mogensen M, Sammes NM, Tompsett GA (2000) Solid State Ion 129(1):63.  https://doi.org/10.1016/S0167-2738(99)00318-5
  105. 105.
  106. 106.
    Esch F, Fabris S, Zhou L, Montini T, Africh C, Fornasiero P, Comelli G, Rosei R (2005) Science 309(5735):752 LP. http://science.sciencemag.org/content/309/5735/752.abstract
  107. 107.
  108. 108.
    Désaunay T, Bonura G, Chiodo V, Freni S, Couzinié JP, Bourgon J, Ringuedé A, Labat F, Adamo C, Cassir M (2013) J Catal 297:193.  https://doi.org/10.1016/J.JCAT.2012.10.011. https://www.sciencedirect.com/science/article/pii/S0021951712003247
  109. 109.
    Mai HX, Sun LD, Zhang YW, Si R, Feng W, Zhang HP, Liu HC, Yan CH (2005) J Phys Chem B 109(51):24380.  https://doi.org/10.1021/jp055584b. https://doi.org/10.1021/jp055584b
  110. 110.
    Skorodumova NV, Simak SI, Lundqvist BI, Abrikosov IA, Johansson B (2002) Phys Rev Lett 89(16):166601/1.  https://doi.org/10.1103/PhysRevLett.89.166601. https://link.aps.org/doi/10.1103/PhysRevLett.89.166601
  111. 111.
  112. 112.
    Abanades S, Legal A, Cordier A, Peraudeau G, Flamant G, Julbe A (2010) J Mater Sci 45(15):4163.  https://doi.org/10.1007/s10853-010-4506-4. https://doi.org/10.1007/s10853-010-4506-4
  113. 113.
  114. 114.
    Berner U, Schierbaum K, Jones G, Wincott P, Haq S, Thornton G (2000) Surf Sci 467(1–3):201.  https://doi.org/10.1016/S0039-6028(00)00770-6. https://www.sciencedirect.com/science/article/pii/S0039602800007706
  115. 115.
  116. 116.
  117. 117.
    Wuilloud E, Delley B, Schneider WD, Baer Y (1984) Phys Rev Lett 53(2):202.  https://doi.org/10.1103/PhysRevLett.53.202. https://link.aps.org/doi/10.1103/PhysRevLett.53.202
  118. 118.
    Marabelli F, Wachter P (1987) Phys Rev B 36(2):1238. http://link.aps.org/doi/10.1103/PhysRevB.36.1238
  119. 119.
    Jiang Y, Adams JB, van Schilfgaarde M (2005) J Chem Phys 123(6):064701.  https://doi.org/10.1063/1.1949189. http://aip.scitation.org/doi/10.1063/1.1949189
  120. 120.
  121. 121.
  122. 122.
  123. 123.
  124. 124.
    Fronzi M, Soon A, Delley B, Traversa E, Stampfl C (2009) J Chem Phys 131(10):104701.  https://doi.org/10.1063/1.3191784. https://aip.scitation.org/doi/abs/10.1063/1.3191784
  125. 125.
  126. 126.
    Gerward L, Staun Olsen J, Petit L, Vaitheeswaran G, Kanchana V, Svane A (2005) J Alloys Compd 400(1–2):56.  https://doi.org/10.1016/J.JALLCOM.2005.04.008. https://www.sciencedirect.com/science/article/pii/S0925838805003403
  127. 127.
    Kaneko K, Inoke K, Freitag B, Hungria AB, Midgley PA, Hansen TW, Zhang J, Ohara S, Adschiri T (2007) Nano Lett 7(2):421.  https://doi.org/10.1021/nl062677b. https://pubs.acs.org/doi/abs/10.1021/nl062677bpubs.acs.org/doi/abs/10.1021/nl062677b
  128. 128.
    Ren Z, Liu N, Chen B, Li J, Mei D (2018) J Phys Chem C 122(9):4828.  https://doi.org/10.1021/acs.jpcc.7b10208. http://pubs.acs.org/doi/10.1021/acs.jpcc.7b10208
  129. 129.
    Chen C, Chen HL, Weng MH, Ju SP, Chang JG, Chang CS (2008) Chin J Catal 29(11):1117.  https://doi.org/10.1016/S1872-2067(09)60011-5. http://linkinghub.elsevier.com/retrieve/pii/S1872206709600115
  130. 130.
    Burow AM, Wende T, Sierka M, Włodarczyk R, Sauer J, Claes P, Jiang L, Meijer G, Lievens P, Asmis KR (2011) Phys Chem Chem Phys 13(43):19393.  https://doi.org/10.1039/c1cp22129a. http://xlink.rsc.org/?DOI=c1cp22129a
  131. 131.
    Nagata T, Miyajima K, Hardy RA, Metha GF, Mafuné F (2015) J Phys Chem A 119(22):5545.  https://doi.org/10.1021/acs.jpca.5b02816. http://pubs.acs.org/doi/10.1021/acs.jpca.5b02816
  132. 132.
    Fernández-Torre D, Kośmider K, Carrasco J, Ganduglia-Pirovano MV, Pérez R (2012) J Phys Chem C 116(25):13584.  https://doi.org/10.1021/jp212605g. http://pubs.acs.org/doi/10.1021/jp212605g
  133. 133.
    Marrocchelli D, Yildiz B (2012) J Phys Chem C 116(3):2411.  https://doi.org/10.1021/jp205573v. http://pubs.acs.org/doi/10.1021/jp205573v
  134. 134.
    Yoshida H, Deguchi H, Miura K, Horiuchi M, Inagaki T (2001) Solid State Ion 140(3–4):191.  https://doi.org/10.1016/S0167-2738(01)00854-2. https://www.sciencedirect.com/science/article/pii/S0167273801008542
  135. 135.
    Ricken M, Nölting J, Riess I (1984) J Solid State Chem 54(1):89. 10.1016/0022-4596(84)90135-X. https://www.sciencedirect.com/science/article/pii/002245968490135X
  136. 136.
  137. 137.
    Hull S, Norberg S, Ahmed I, Eriksson S, Marrocchelli D, Madden P (2009) J Solid State Chem 182(10):2815.  https://doi.org/10.1016/J.JSSC.2009.07.044. https://www.sciencedirect.com/science/article/pii/S0022459609003545
  138. 138.
    Perrichon V, Laachir A, Bergeret G, Frety R, Tournayan L, Touret O (1994) J Chem Soc Faraday Trans 90(5):773.  https://doi.org/10.1039/FT9949000773. http://dx.doi.org/10.1039/FT9949000773
  139. 139.
    Romeo M, Bak K, El Fallah J, Le Normand F, Hilaire L (1993) Surf Interf Anal 20(6):508.  https://doi.org/10.1002/sia.740200604. http://doi.wiley.com/10.1002/sia.740200604
  140. 140.
  141. 141.
  142. 142.
    Binet C, Badri A, Lavalley JC (1994) J Phys Chem 98(25):6392.  https://doi.org/10.1021/j100076a025. http://pubs.acs.org/doi/abs/10.1021/j100076a025
  143. 143.
    Soria J, Martínez-Arias A, Conesa JC (1995) J Chem Soc Faraday Trans 91(11):1669.  https://doi.org/10.1039/FT9959101669. http://xlink.rsc.org/?DOI=FT9959101669
  144. 144.
    Namai Y, Fukui KI, Iwasawa Y (2003) J Phys Chem B 107(42):11666.  https://doi.org/10.1021/jp030142q. http://pubs.acs.org/doi/abs/10.1021/jp030142q
  145. 145.
    Fabris S, Vicario G, Balducci G, de Gironcoli S, Baroni S (2005) J Phys Chem B 109(48):22860.  https://doi.org/10.1021/jp0511698. http://pubs.acs.org/doi/abs/10.1021/jp0511698
  146. 146.
    Nolan M, Grigoleit S, Sayle DC, Parker SC, Watson GW (2005) Surf Sci 576(1–3):217.  https://doi.org/10.1016/J.SUSC.2004.12.016. https://www.sciencedirect.com/science/article/pii/S0039602804015651
  147. 147.
    Huang M, Fabris S (2008) J Phys Chem C 112(23):8643.  https://doi.org/10.1021/jp709898r
  148. 148.
    Migani A, Vayssilov GN, Bromley ST, Illas F, Neyman KM (2010) J Mater Chem 20(46):10535.  https://doi.org/10.1039/C0JM01908A. http://dx.doi.org/10.1039/C0JM01908A
  149. 149.
    Castleton CWM, Kullgren J, Hermansson K (2007) J Chem Phys 127:244704.  https://doi.org/10.1063/1.2800015
  150. 150.
  151. 151.
    Nolan M, Fearon J, Watson G (2006) Solid State Ion 177(35–36):3069.  https://doi.org/10.1016/j.ssi.2006.07.045. http://linkinghub.elsevier.com/retrieve/pii/S0167273806004528
  152. 152.
    Tuller HL, Nowick AS (1979) J Electrochem Soc 126(2):209.  https://doi.org/10.1149/1.2129007. http://jes.ecsdl.org/cgi/doi/10.1149/1.2129007
  153. 153.
    Choi YM, Abernathy H, Chen HT, Lin MC, Liu M (2006) Chem Phys Chem 7(9):1957.  https://doi.org/10.1002/cphc.200600190. http://doi.wiley.com/10.1002/cphc.200600190
  154. 154.
    Huang M, Fabris S (2007) Phys Rev B Condensed Matter Materials Physics 75(8):081404.  https://doi.org/10.1103/PhysRevB.75.081404. https://link.aps.org/doi/10.1103/PhysRevB.75.081404
  155. 155.
    Li HY, Wang HF, Gong XQ, Guo YL, Guo Y, Lu G, Hu P (2009) Phys Rev B 79(19):193401.  https://doi.org/10.1103/PhysRevB.79.193401. https://link.aps.org/doi/10.1103/PhysRevB.79.193401
  156. 156.
  157. 157.
    Burch R (2006) Phys Chem Chem Phys 8(47):5483.  https://doi.org/10.1039/B607837K. http://dx.doi.org/10.1039/B607837K
  158. 158.
    Hinrichsen KO, Kochloefl K, Muhler M (2008) In: Ertl G, Knözinger H, Schüth F, Weitkamp J Handbook of heterogeneous catalysis, 2nd edn, Chap. 13.12. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, pp 2905–2920Google Scholar
  159. 159.
    Bruix A, Rodriguez JA, Ramírez PJ, Senanayake SD, Evans J, Park JB, Stacchiola D, Liu P, Hrbek J, Illas F (2012) J Am Chem Soc 134(21):8968.  https://doi.org/10.1021/ja302070k. http://pubs.acs.org/doi/10.1021/ja302070k
  160. 160.
    Flaherty DW, Yu WY, Pozun ZD, Henkelman G, Mullins CB (2011) J Catal 282(2):278.  https://doi.org/10.1016/J.JCAT.2011.06.024. https://www.sciencedirect.com/science/article/pii/S0021951711002223
  161. 161.
    Tang C, Zhang H, Dong L (2016) Catal Sci Technol 6(5):1248.  https://doi.org/10.1039/C5CY01487E. http://xlink.rsc.org/?DOI=C5CY01487E
  162. 162.
  163. 163.
    Zhang J, Gong XQ, Lu G (2014) Phys Chem Chem Phys 16(32):16904.  https://doi.org/10.1039/C4CP02235A. http://xlink.rsc.org/?DOI=C4CP02235A
  164. 164.
  165. 165.
  166. 166.
  167. 167.
    Sharma S, Hu Z, Zhang P, McFarland EW, Metiu H (2011) J Catal 278(2):297.  https://doi.org/10.1016/J.JCAT.2010.12.015. https://www.sciencedirect.com/science/article/pii/S0021951710004446
  168. 168.
    Qi K, Zasada F, Piskorz W, Indyka P, Gryboś J, Trochowski M, Buchalska M, Kobielusz M, Macyk W, Sojka Z (2016) J Phys Chem C 120(10):5442.  https://doi.org/10.1021/acs.jpcc.5b10983
  169. 169.
    Varghese OK, Paulose M, LaTempa TJ, Grimes CA (2010) Nano Lett 10(2):750.  https://doi.org/10.1021/nl903742x. http://pubs.acs.org/doi/abs/10.1021/nl903742x
  170. 170.
    Kisch H (2014) Semiconductor photocatalysis: principles and applications. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany.  https://doi.org/10.1002/9783527673315. http://doi.wiley.com/10.1002/9783527673315
  171. 171.
    Li Y, Wang WN, Zhan Z, Woo MH, Wu CY, Biswas P (2010) Appl Catal B Environ 100(1–2):386.  https://doi.org/10.1016/j.apcatb.2010.08.015. https://www.sciencedirect.com/science/article/pii/S0926337310003681
  172. 172.
  173. 173.
    Gong J, Sumathy K, Qiao Q, Zhou Z (2017) Renewable and sustainable energy reviews 68:234.  https://doi.org/10.1016/j.rser.2016.09.097. https://www.sciencedirect.com/science/article/pii/S1364032116305883
  174. 174.
    Richhariya G, Kumar A, Tekasakul P, Gupta B (2017) Renewable and sustainable energy reviews 69:705.  https://doi.org/10.1016/J.RSER.2016.11.198. https://www.sciencedirect.com/science/article/pii/S1364032116309571
  175. 175.
  176. 176.
    Anpo M, Yamashita H, Ichihashi Y, Ehara S (1995) J Electroanal Chem 396(1–2):21.  https://doi.org/10.1016/0022-0728(95)04141-A. https://www.sciencedirect.com/science/article/pii/002207289504141A?via%3Dihub
  177. 177.
  178. 178.
    Hagfeldt A, Lunell S, Sieghbahn HOG (1994) Int J Quantum Chem 49(2):97.  https://doi.org/10.1002/qua.560490205. http://doi.wiley.com/10.1002/qua.560490205
  179. 179.
    Huang CN, Bow JS, Zheng Y, Chen SY, Ho NJ, Shen P (2010) Nanoscale Res Lett 5(6):972.  https://doi.org/10.1007/s11671-010-9591-4. http://www.nanoscalereslett.com/content/5/6/972
  180. 180.
    Tsipis AC, Tsipis CA (1999) Phys Chem Chem Phys 1(18):4453.  https://doi.org/10.1039/a904269e. http://xlink.rsc.org/?DOI=a904269e
  181. 181.
    Albaret T, Finocchi F, Noguera C (1999) Faraday Discuss 114:285.  https://doi.org/10.1039/a903066b. http://xlink.rsc.org/?DOI=a903066b
  182. 182.
    Matsuda Y, Bernstein ER (2005) J Phys Chem A 109(2):314.  https://doi.org/10.1021/jp040670h. http://pubs.acs.org/doi/abs/10.1021/jp040670h
  183. 183.
    Zhai HJ, Wang LS (2007) J Am Chem Soc 129(10):3022.  https://doi.org/10.1021/ja068601z. http://pubs.acs.org/doi/abs/10.1021/ja068601z
  184. 184.
    Albaret T, Finocchi F, Noguera C (2000) J Chem Phys 113(6):2238.  https://doi.org/10.1063/1.482038. http://aip.scitation.org/doi/10.1063/1.482038
  185. 185.
    Yu X, Oganov AR, Popov IA, Qian G, Boldyrev AI (2016) Angew Chem Int Edn 55(5):1699.  https://doi.org/10.1002/anie.201508439. http://doi.wiley.com/10.1002/anie.201508439
  186. 186.
    Morales-García Á, Valero R, Illas F (2017) J Chem Theory Comput 13(8):3746.  https://doi.org/10.1021/acs.jctc.7b00308. http://pubs.acs.org/doi/10.1021/acs.jctc.7b00308
  187. 187.
    Berardo E, Kaplan F, Bhaskaran-Nair K, Shelton WA, van Setten MJ, Kowalski K, Zwijnenburg MA (2017) J Chem Theory Comput 13(8):3814.  https://doi.org/10.1021/acs.jctc.7b00538. http://pubs.acs.org/doi/10.1021/acs.jctc.7b00538
  188. 188.
    Kolmer M, Ahmad Zebari AA, Goryl M, Buatier De Mongeot F, Zasada F, Piskorz W, Pietrzyk P, Sojka Z, Krok F, Szymonski M Phys Rev B Condens Matter Mater Phys 88(19).  https://doi.org/10.1103/PhysRevB.88.195427
  189. 189.
    Labat F, Baranek P, Domain C, Minot C, Adamo C (2007) J Chem Phys 126(15):154703.  https://doi.org/10.1063/1.2717168. http://aip.scitation.org/doi/10.1063/1.2717168
  190. 190.
    Futera Z, English NJ (2017) J Phys Chem C 121(12):6701.  https://doi.org/10.1021/acs.jpcc.6b12803. http://pubs.acs.org/doi/10.1021/acs.jpcc.6b12803
  191. 191.
  192. 192.
  193. 193.
    Bandura AV, Sykes DG, Shapovalov V, Troung TN, Kubicki JD, Evarestov RA (2004) J Phys Chem B 108(23):7844.  https://doi.org/10.1021/jp037141i. https://pubs.acs.org/doi/abs/10.1021/jp037141ipubs.acs.org/doi/abs/10.1021/jp037141i
  194. 194.
  195. 195.
    Nadeem IM, Harrison GT, Wilson A, Pang CL Zegenhagen J Thornton G (2017) J Phys Chem B 122(2).  https://doi.org/10.1021/acs.jpcb.7b06955. http://pubs.acs.org/doi/abs/10.1021/acs.jpcb.7b06955
  196. 196.
    Pang CL, Lindsay R, Thornton G (2008) Chem Soc Rev 37(10):2328.  https://doi.org/10.1039/b719085a. http://xlink.rsc.org/?DOI=b719085a
  197. 197.
    Wendt S, Schaub R, Matthiesen J, Vestergaard EK, Wahlström E, Rasmussen MD, Thostrup P, Molina LM, Lægsgaard E, Stensgaard I, Hammer B, Besenbacher F (2005) Surf Sci 598(1–3):226.  https://doi.org/10.1016/j.susc.2005.08.041. https://www.sciencedirect.com/science/article/pii/S0039602805010629?via%3Dihub
  198. 198.
  199. 199.
  200. 200.
  201. 201.
    Wu X, Selloni A, Nayak SK (2004) J Chem Phys 120(9):4512.  https://doi.org/10.1063/1.1636725. http://aip.scitation.org/doi/10.1063/1.1636725
  202. 202.
    Rasmussen MD, Molina LM, Hammer B (2004) J Chem Phys 120(2):988.  https://doi.org/10.1063/1.1631922. http://aip.scitation.org/doi/10.1063/1.1631922
  203. 203.
    Inoue T, Fujishima A, Konishi S, Honda K (1979) Nature 277(5698):637.  https://doi.org/10.1038/277637a0. http://www.nature.com/articles/277637a0
  204. 204.
  205. 205.
  206. 206.
    Diwald O, Thompson TL, Zubkov T, Walck SD, Yates JT (2004) J Phys Chem B 108(19):6004.  https://doi.org/10.1021/jp031267y. http://pubs.acs.org/doi/abs/10.1021/jp031267y
  207. 207.
    Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Science 293(5528):269.  https://doi.org/10.1126/science.1061051. http://www.ncbi.nlm.nih.gov/pubmed/11452117
  208. 208.
    Sakthivel S, Janczarek M, Kisch H (2004) J Phys Chem B 108(50):19384.  https://doi.org/10.1021/jp046857q. https://pubs.acs.org/doi/abs/10.1021/jp046857q
  209. 209.
    Di Valentin C, Pacchioni G, Selloni A (2005) Chem Mater 17(26):6656.  https://doi.org/10.1021/cm051921h. https://pubs.acs.org/doi/abs/10.1021/cm051921h
  210. 210.
    Di Valentin C, Pacchioni G, Selloni A, Livraghi S, Giamello E (2005) J Phys Chem B 109(23):11414.  https://doi.org/10.1021/jp051756t. https://pubs.acs.org/doi/abs/10.1021/jp051756t
  211. 211.
    Grill L, Dyer M, Lafferentz L, Persson M, Peters MV, Hecht S (2007) Nature Nanotechnol 2(11):687.  https://doi.org/10.1038/nnano.2007.346. http://www.nature.com/articles/nnano.2007.346
  212. 212.
    Cai J, Ruffieux P, Jaafar R, Bieri M, Braun T, Blankenburg S, Muoth M, Seitsonen AP, Saleh M, Feng X, Müllen K, Fasel R (2010) Nature 466(7305):470.  https://doi.org/10.1038/nature09211. http://www.nature.com/articles/nature09211
  213. 213.
    Kolmer M, Ahmad Zebari AA, Prauzner-Bechcicki JS, Piskorz W, Zasada F, Godlewski S, Such B, Sojka Z, Szymonski M (2013) Angew Chem Int Edn 52(39):10300.  https://doi.org/10.1002/anie.201303657
  214. 214.
    Zasada F, Piskorz W, Godlewski S, Prauzner-Bechcicki JS, Tekiel A, Budzioch J, Cyganik P, Szymonski M, Sojka Z (2011) J Phys Chem C 115(10):4134.  https://doi.org/10.1021/jp111014r
  215. 215.
    Zasada F, Piskorz W, Gryboś J, Sojka Z (2014) J Phys Chem C 118(17):8971.  https://doi.org/10.1021/jp412756a
  216. 216.
    Li H, Eddaoudi M, O’Keeffe M, Yaghi OM (1999) Nature 402(6759):276.  https://doi.org/10.1038/46248. http://www.nature.com/doifinder/10.1038/46248
  217. 217.
  218. 218.
    Stadelmann PA. JEMS-SAAS. http://www.jems-saas.ch/
  219. 219.
    Kolmer M, Zuzak R, Ahmad Zebari AA, Godlewski S, Prauzner-Bechcicki JS, Piskorz W, Zasada F, Sojka Z, Bléger D, Hecht S, Szymonski M (2015) Chem Commun 51(56):11276.  https://doi.org/10.1039/C5CC02989A. http://xlink.rsc.org/?DOI=C5CC02989A
  220. 220.
  221. 221.
  222. 222.
  223. 223.
    Adamski A, Sojka Z, Dyrek K, Che M, Wendt G, Albrecht S (1999) Langmuir 15(18):5733.  https://doi.org/10.1021/la981431m. https://pubs.acs.org/doi/abs/10.1021/la981431m
  224. 224.
    Korhonen ST, Airaksinen SM, Krause AOI (2006) Catal Today 112(1–4):37.  https://doi.org/10.1016/j.cattod.2005.11.053. http://linkinghub.elsevier.com/retrieve/pii/S0920586105008710
  225. 225.
  226. 226.
  227. 227.
    NETL (2004) Seventh Edition Fuel Cell Handbook. Tech. rep., National Energy Technology Laboratory, Pittsburgh, PA, and Morgantown, WV.  https://doi.org/10.2172/834188. http://www.osti.gov/servlets/purl/834188-H0AaAO/native/
  228. 228.
  229. 229.
    Zhao X, Vanderbilt D (2002) Phys Rev B Condens Matter Mater Phys 65(7):1.  https://doi.org/10.1103/PhysRevB.65.075105. https://link.aps.org/doi/10.1103/PhysRevB.65.075105
  230. 230.
    Jomard G, Petit T, Pasturel A, Magaud L, Kresse G, Hafner J (1999) Phys Rev B 59(6):4044.  https://doi.org/10.1103/PhysRevB.59.4044. https://link.aps.org/doi/10.1103/PhysRevB.59.4044
  231. 231.
  232. 232.
  233. 233.
    Jaffe JE, Bachorz RA, Gutowski M (2005) Phys Rev B Condens Matter Mater Phys 72(14):144107.  https://doi.org/10.1103/PhysRevB.72.144107. https://link.aps.org/doi/10.1103/PhysRevB.72.144107
  234. 234.
    Li S, Dixon DA (2010) J Phys Chem A 114(7):2665.  https://doi.org/10.1021/jp910310j. http://pubs.acs.org/doi/abs/10.1021/jp910310j
  235. 235.
    Gerosa M, Bottani CE, Caramella L, Onida G, Di Valentin C, Pacchioni G (2015) Phys Rev B Condens Matter Materials Phys 91(15):155201. 10.1103/PhysRevB.91.155201. https://link.aps.org/doi/10.1103/PhysRevB.91.155201
  236. 236.
  237. 237.
    Boulc’h F, Dessemond L, Djurado E (2004) J Eur Ceram Soc 24(6):1181.  https://doi.org/10.1016/S0955-2219(03)00563-6. https://www.sciencedirect.com/science/article/pii/S0955221903005636
  238. 238.
    Piskorz W, Gryboś J, Zasada F, Zapała P, Cristol S, Paul JF, Sojka Z (2012) J Phys Chem C 116(36):19307.  https://doi.org/10.1021/jp3050059
  239. 239.
    Piskorz W, Gryboś J, Zasada F, Cristol S, Paul JF, Adamski A, Sojka Z (2011) J Phys Chem C 115(49):24274.  https://doi.org/10.1021/jp2086335
  240. 240.
    Barnard AS, Curtiss LA (2005) Rev Adv Mater Sci 10(2):105Google Scholar
  241. 241.
  242. 242.
    Akporiaye DE, Dahl IM, Mostad HB, Wendelbo R (1996) J Phys Chem 100(10):4148.  https://doi.org/10.1021/jp952189k. http://pubs.acs.org/doi/abs/10.1021/jp952189k
  243. 243.
    Olson DH, Khosrovani N, Peters AW, Toby BH (2000) J Phys Chem B 104(20):4844.  https://doi.org/10.1021/jp000417r. http://pubs.acs.org/doi/abs/10.1021/jp000417r
  244. 244.
    Lu B, Kanai T, Oumi Y, Sano T (2007) J Porous Mater 14(1):89.  https://doi.org/10.1007/s10934-006-9012-3. http://link.springer.com/10.1007/s10934-006-9012-3
  245. 245.
    Sazama P, Tabor E, Klein P, Wichterlova B, Sklenak S, Mokrzycki L, Pashkkova V, Ogura M, Dedecek J (2016) J Catal 333:102.  https://doi.org/10.1016/j.jcat.2015.10.010. https://www.sciencedirect.com/science/article/pii/S0021951715003383
  246. 246.
  247. 247.
  248. 248.
    Majda D, Paz FA, Friedrichs D, Foster MD, Simperler A, Bell RG, Klinowski J (2008) J Phys Chem C 112(4):1040.  https://doi.org/10.1021/jp0760354. https://pubs.acs.org/doi/abs/10.1021/jp0760354
  249. 249.
    Benco L, Bucko T, Hafner J, Toulhoat H (2005) J Phys Chem B 109(43):20361.  https://doi.org/10.1021/jp0530597. https://pubs.acs.org/doi/abs/10.1021/jp0530597
  250. 250.
    García-Pérez E, Dubbeldam D, Liu B, Smit B, Calero S (2007) Angew Chem Int Edn 46(1–2):276.  https://doi.org/10.1002/anie.200603136. http://doi.wiley.com/10.1002/anie.200603136
  251. 251.
    Meeprasert J, Kungwan N, Jungsuttiwong S, Namuangruk S (2014) Microporous Mesoporous Mater 195:227.  https://doi.org/10.1016/j.micromeso.2014.04.038. https://www.sciencedirect.com/science/article/pii/S1387181114002248?via%3Dihub
  252. 252.
    Xu R, Pang W, Yu J, Huo Q, Chen J (2007) Chem zeolites and related porous materials synthesis and structure. Wiley, Asia.  https://doi.org/10.1002/9780470822371. https://www.wiley.com/en-pl/Chemistry+of+Zeolites+and+Related+Porous+Materials:+Synthesis+and+Structure-p-9780470822333
  253. 253.
    Kowalak S, Stawiński K, Makowiak A (2001) Microporous Mesoporous Mater 44–45:283.  https://doi.org/10.1016/S1387-1811(01)00194-9. https://www.sciencedirect.com/science/article/pii/S1387181101001949?via%3Dihub
  254. 254.
    Nogier JP, Millot Y, Man PP, Shishido T, Che M, Dzwigaj S (2009) J Phys Chem C 113(12):4885.  https://doi.org/10.1021/jp8099829. http://pubs.acs.org/doi/10.1021/jp8099829
  255. 255.
    Trejda M, Ziolek M, Millot Y, Chalupka K, Che M, Dzwigaj S (2011) J Catal 281(1):169.  https://doi.org/10.1016/j.jcat.2011.04.013. https://www.sciencedirect.com/science/article/pii/S0021951711001357?via%3Dihub
  256. 256.
    Pérez-Ramírez J, Christensen CH, Egeblad K, Christensen CH, Groen JC (2008) Chem Soc Rev 37(11):2530.  https://doi.org/10.1039/b809030k. http://xlink.rsc.org/?DOI=b809030k
  257. 257.
    Roth WJ, Nachtigall P, Morris RE, Čejka J (2014) Chem Rev 114(9):4807.  https://doi.org/10.1021/cr400600f. http://pubs.acs.org/doi/10.1021/cr400600f
  258. 258.
    Kulkarni AR, Zhao ZJ, Siahrostami S, Nørskov JK, Studt F (2018) Catal Sci Technol 8(1):114.  https://doi.org/10.1039/C7CY01229B. http://xlink.rsc.org/?DOI=C7CY01229B
  259. 259.
    Iwamoto M, Yokoo S, Sakai K, Kagawa S (1981) J Chem Soc Faraday Trans 1 77(7):1629.  https://doi.org/10.1039/f19817701629. http://xlink.rsc.org/?DOI=f19817701629
  260. 260.
    Iwamoto M, Furukawa H, Mine Y, Uemura F, Mikuriya SI, Kagawa S (1986) J Chem Soc Chem Commun 0(16):1272.  https://doi.org/10.1039/c39860001272. http://xlink.rsc.org/?DOI=c39860001272
  261. 261.
    Oda A, Torigoe H, Itadani A, Ohkubo T, Yumura T, Kobayashi H, Kuroda Y (2012) Angew Chem Int Edn 51(31):7719.  https://doi.org/10.1002/anie.201201000. http://doi.wiley.com/10.1002/anie.201201000
  262. 262.
    Kozyra P, Piskorz W (2016) Phys Chem Chem Phys 18(18):12592.  https://doi.org/10.1039/C5CP05493A. http://xlink.rsc.org/?DOI=C5CP05493A
  263. 263.
    Stepanov AG, Arzumanov SS, Gabrienko AA, Parmon VN, Ivanova II, Freude D (2008) Chem Phys Chem 9(17):2559.  https://doi.org/10.1002/cphc.200800569. http://doi.wiley.com/10.1002/cphc.200800569
  264. 264.
  265. 265.
    Niu X, Gao J, Miao Q, Dong M, Wang G, Fan W, Qin Z, Wang J (2014) Microporous Mesoporous Mater 197:252.  https://doi.org/10.1016/j.micromeso.2014.06.027. https://www.sciencedirect.com/science/article/pii/S138718111400345X
  266. 266.
    Wang X, Xu J, Qi G, Li B, Wang C, Deng F (2013) J Phys Chem C 117(8):4018.  https://doi.org/10.1021/jp310872a. http://pubs.acs.org/doi/10.1021/jp310872a
  267. 267.
    Smeets PJ, Woertink JS, Sels BF, Solomon EI, Schoonheydt RA (2010) Inorg Chem 49(8):3573.  https://doi.org/10.1021/ic901814f. http://pubs.acs.org/doi/abs/10.1021/ic901814f
  268. 268.
    Woertink JS, Smeets PJ, Groothaert MH, Vance MA, Sels BF, Schoonheydt RA, Solomon EI (2009) Proc Natl Acad Sci USA 106(45):18908.  https://doi.org/10.1073/pnas.0910461106. http://www.ncbi.nlm.nih.gov/pubmed/19864626, www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC2776445
  269. 269.
  270. 270.
  271. 271.
    Michalak A, Mitoraj M, Ziegler T (2008) J Phys Chem A 112(9):1933.  https://doi.org/10.1021/jp075460u. https://pubs.acs.org/doi/abs/10.1021/jp075460u
  272. 272.
  273. 273.
    M. Radoń. Natorbs (v. 0.3)—utility for computing natural (spin) orbitals and natural orbitals for chemical valence. http://www.chemia.uj.edu.pl/~mradon/natorbs
  274. 274.
    Pietrzyk P, Sojka Z, Dzwigaj S, Che M (2007) J Am Chem Soc 129(46):14174.  https://doi.org/10.1021/ja076689q. https://pubs.acs.org/doi/abs/10.1021/ja076689q
  275. 275.
    Pietrzyk P, Piskorz W, Sojka Z, Broclawik E (2003) J Phys Chem B 107(25):6105.  https://doi.org/10.1021/jp034173x
  276. 276.
    Broclawik E, Datka J, Gil B, Piskorz W, Kozyra P (2000) Topics Catal 11(1–4):335.  https://doi.org/10.1023/a:1027235511555. http://link.springer.com/10.1023/A:1027235511555
  277. 277.
    Uzunova EL, Göltl F, Kresse G, Hafner J (2009) J Phys Chem C 113(13):5274.  https://doi.org/10.1021/jp809927k. http://pubs.acs.org/doi/10.1021/jp809927k
  278. 278.
    Davidová M, Nachtigallová D, Nachtigall P, Sauer J (2004) J Phys Chem B 108(36):13674.  https://doi.org/10.1021/jp0478007. https://pubs.acs.org/doi/abs/10.1021/jp0478007
  279. 279.
    Rejmak P, Broclawik E, Góra-Marek K, Radoń M, Datka J (2008) J Phys Chem C 112(46):17998.  https://doi.org/10.1021/jp8042686. http://pubs.acs.org/doi/10.1021/jp8042686
  280. 280.
    Izquierdo R, Rodríguez LJ, Añez R, Sierraalta A (2011) J Mol Catal A Chem 348(1–2):55.  https://doi.org/10.1016/j.molcata.2011.07.018. https://www.sciencedirect.com/science/article/pii/S1381116911003189
  281. 281.
    Göltl F, Hafner J (2012) J Chem Phys 136(6):64501.  https://doi.org/10.1063/1.3676410. http://aip.scitation.org/doi/10.1063/1.3676410
  282. 282.
    Heyden A, Peters B, Bell AT, Keil FJ (2005) J Phys Chem B 109(5):1857.  https://doi.org/10.1021/jp040549a. https://pubs.acs.org/doi/abs/10.1021/jp040549a
  283. 283.
    Kozyra P, Piskorz W (2015) Phys Chem Chem Phys PCCP 17(20):13267.  https://doi.org/10.1039/c4cp05932h. http://www.ncbi.nlm.nih.gov/pubmed/25920323
  284. 284.
    Broclawik E, Załucka J, Kozyra P, Mitoraj M, Datka J (2010) J Phys Chem C 114(21):9808.  https://doi.org/10.1021/jp1002676. http://pubs.acs.org/doi/10.1021/jp1002676
  285. 285.
    Kozyra P, Załucka J, Mitoraj M, Brocławik E, Datka J (2008) Catal Lett 126(3–4):241.  https://doi.org/10.1007/s10562-008-9620-4. http://link.springer.com/10.1007/s10562-008-9620-4
  286. 286.
    Kozyra P, Radon M, Datka J, Broclawik E (2012) Struct Chem 23(5):1349.  https://doi.org/10.1007/s11224-012-0050-y. http://link.springer.com/10.1007/s11224-012-0050-y
  287. 287.
    Radoń M, Kozyra P, Stȩpniewski A, Datka J, Broclawik E (2013) Can J Chem 91(7):538.  https://doi.org/10.1139/cjc-2012-0536. http://www.nrcresearchpress.com/doi/abs/10.1139/cjc-2012-0536
  288. 288.
    Sierka M, Sauer J (2000) J Chem Phys 112(16):6983.  https://doi.org/10.1063/1.481296. https://aip.scitation.org/doi/10.1063/1.481296
  289. 289.
    Pietrzyk P, Zasada F, Piskorz W, Kotarba A, Sojka Z (2007) Catal Today 119(1–4):219.  https://doi.org/10.1016/j.cattod.2006.08.054. https://www.sciencedirect.com/science/article/pii/S0920586106005256?via%3Dihub
  290. 290.
    Dubkov K, Ovanesyan N, Shteinman A, Starokon E, Panov G (2002) J Catal 207(2):341.  https://doi.org/10.1006/JCAT.2002.3552. https://www.sciencedirect.com/science/article/pii/S0021951702935529?via%3Dihub
  291. 291.
    Starokon EV, Parfenov MV, Arzumanov SS, Pirutko LV, Stepanov AG, Panov GI (2013) J Catal 300:47.  https://doi.org/10.1016/J.JCAT.2012.12.030. https://www.sciencedirect.com/science/article/pii/S002195171200423X
  292. 292.
    Xu J, Armstrong RD, Shaw G, Dummer NF, Freakley SJ, Taylor SH, Hutchings GJ (2016) Catal Today 270:93.  https://doi.org/10.1016/J.CATTOD.2015.09.011. https://www.sciencedirect.com/science/article/pii/S0920586115005659
  293. 293.
    Park KS, Kim JH, Park SH, Moon DJ, Roh HS, Chung CH, Um SH, Choi JH, Bae JW (2017) J Mol Catal A Chem 426:130.  https://doi.org/10.1016/J.MOLCATA.2016.11.008. https://www.sciencedirect.com/science/article/pii/S1381116916304824
  294. 294.
    Kletnieks PW, Liang AJ, Craciun R, Ehresinann JO, Marcus DM, Bhirud VA, Klaric MM, Hayman MJ, Guenther DR, Bagatchenko OP, Dixon DA, Gates BC, Haw JF (2007) Chem Eur J 13(26):7294.  https://doi.org/10.1002/chem.200700721. http://doi.wiley.com/10.1002/chem.200700721
  295. 295.
    Archipov T, Santra S, Ene AB, Stoll H, Rauhut G, Roduner E (2009) J Phys Chem C 113(10):4107.  https://doi.org/10.1021/jp805976a. http://pubs.acs.org/doi/10.1021/jp805976a
  296. 296.
  297. 297.
  298. 298.
    Song L, Sun Z, Duan L, Gui J, McDougall GS (2007) Microporous Mesoporous Mater 104(1–3):115  https://doi.org/10.1016/j.micromeso.2007.01.015. https://www.sciencedirect.com/science/article/pii/S1387181107000418
  299. 299.
    Gonçalves CV, Cardoso D (2008) Microporous Mesoporous Mater 116(1–3):352.  https://doi.org/10.1016/j.micromeso.2008.04.022. https://www.sciencedirect.com/science/article/pii/S138718110800200X
  300. 300.
    Abdelrasoul A, Zhang H, Cheng CH, Doan H (2017) Microporous Mesoporous Mater 242:294.  https://doi.org/10.1016/j.micromeso.2017.01.038. https://www.sciencedirect.com/science/article/pii/S1387181117300380
  301. 301.
    Yoshino H, Ohnishi CH, Hosokawa S, Wada K, Inoue M (2011) J Mater Sci 46(3):797.  https://doi.org/10.1007/s10853-010-4818-4. http://link.springer.com/10.1007/s10853-010-4818-4
  302. 302.
    Wilczkowska E, Krawczyk K, Petryk J, Sobczak JW, Kaszkur Z (2010) Appl Catal A Gen 389(1–2):165.  https://doi.org/10.1016/j.apcata.2010.09.016. http://linkinghub.elsevier.com/retrieve/pii/S0926860X10006708
  303. 303.
    Amrousse R, Tsutsumi A, Bachar A, Lahcene D (2013) Appl Catal A Gen 450:253.  https://doi.org/10.1016/j.apcata.2012.10.036. http://linkinghub.elsevier.com/retrieve/pii/S0926860X12006849
  304. 304.
    Li WY, Xu LN, Chen J (2005) Adv Funct Mater 15(5):851.  https://doi.org/10.1002/adfm.200400429. http://doi.wiley.com/10.1002/adfm.200400429
  305. 305.
    Woodhouse M, Herman GS, Parkinson BA (2005) Chem Mater 17(17):4318.  https://doi.org/10.1021/cm050546q. http://pubs.acs.org/doi/abs/10.1021/cm050546q
  306. 306.
    Wang G, Liu H, Horvat J, Wang B, Qiao S, Park J, Ahn H (2010) Chem A Eur J 16(36):11020.  https://doi.org/10.1002/chem.201000562. http://doi.wiley.com/10.1002/chem.201000562
  307. 307.
    Fu L, Liu Z, Liu Y, Han B, Hu P, Cao L, Zhu D (2005) Adv Mater 17(2):217.  https://doi.org/10.1002/adma.200400833. http://doi.wiley.com/10.1002/adma.200400833
  308. 308.
    Zasada F, Stelmachowski P, Maniak G, Paul JF, Kotarba A, Sojka Z (2009) Catal Lett 127(1–2):126.  https://doi.org/10.1007/s10562-008-9655-6. http://link.springer.com/10.1007/s10562-008-9655-6
  309. 309.
    Stelmachowski P, Zasada F, Maniak G, Granger P, Inger M, Wilk M, Kotarba A, Sojka Z (2009) Catal Lett 130(3–4):637.  https://doi.org/10.1007/s10562-009-0014-z. http://link.springer.com/10.1007/s10562-009-0014-z
  310. 310.
    Piskorz W, Zasada F, Stelmachowski P, Kotarba A, Sojka Z (2008) Catal Today 137(2–4):418.  https://doi.org/10.1016/j.cattod.2008.02.027
  311. 311.
    Karásková K, Obalová L, Jirátová K, Kovanda F (2010) Chem Eng J 160(2):480.  https://doi.org/10.1016/j.cej.2010.03.058. http://linkinghub.elsevier.com/retrieve/pii/S1385894710002949
  312. 312.
    Qiu Y, Yang S, Deng H, Jin L, Li W (2010) J Mater Chem 20(21):4439.  https://doi.org/10.1039/c0jm00101e. http://xlink.rsc.org/?DOI=c0jm00101e
  313. 313.
    Zhou L, Zhao D, Lou XW (2012) Adv Mater 24(6):745.  https://doi.org/10.1002/adma.201104407. http://doi.wiley.com/10.1002/adma.201104407
  314. 314.
  315. 315.
    Sickafus KE, Wills JM, Grimes NW (2004) J Am Ceram Soc 82(12):3279.  https://doi.org/10.1111/j.1151-2916.1999.tb02241.x. http://doi.wiley.com/10.1111/j.1151-2916.1999.tb02241.x
  316. 316.
    Paudel TR, Zakutayev A, Lany S, D’Avezac M, Zunger A (2011) Adv Funct Mater 21(23):4493.  https://doi.org/10.1002/adfm.201101469. http://doi.wiley.com/10.1002/adfm.201101469
  317. 317.
  318. 318.
    Cohen AJ, Mori-Sanchez P, Yang W (2008) Science 321(5890):792.  https://doi.org/10.1126/science.1158722. http://www.sciencemag.org/cgi/doi/10.1126/science.1158722
  319. 319.
    Qiao L, Xiao HY, Meyer HM, Sun JN, Rouleau CM, Puretzky AA, Geohegan DB, Ivanov IN, Yoon M, Weber WJ, Biegalski MD (2013) J Mater Chem C 1(31):4628.  https://doi.org/10.1039/c3tc30861h. http://xlink.rsc.org/?DOI=c3tc30861h
  320. 320.
  321. 321.
    Wang L, Maxisch T, Ceder G (2006) Phys Rev B Conden Matter Mater Phys 73(19):195107.  https://doi.org/10.1103/PhysRevB.73.195107. https://link.aps.org/doi/10.1103/PhysRevB.73.195107
  322. 322.
  323. 323.
  324. 324.
  325. 325.
    Wu Z, Cohen RE, Singh DJ (2004) Phys Rev B 70(10):104112.  https://doi.org/10.1103/PhysRevB.70.104112. https://link.aps.org/doi/10.1103/PhysRevB.70.104112
  326. 326.
    Koch W, Holthausen MC (2001) A chemist’s guide to density functional theory. Wiley-VCH Verlag GmbH, Weinheim. FRG.  https://doi.org/10.1002/3527600043. http://doi.wiley.com/10.1002/3527600043
  327. 327.
    Koo HJ, Whangbo MH (2008) Inorg Chem 47(11):4779.  https://doi.org/10.1021/ic800216j. http://pubs.acs.org/doi/abs/10.1021/ic800216j
  328. 328.
  329. 329.
    Rodriguez-Fortea A, Llunell M, Alemany P, Canadell E (2009) Inorg Chem 48(13):5779.  https://doi.org/10.1021/ic900105u. http://pubs.acs.org/doi/abs/10.1021/ic900105u
  330. 330.
    Piskunov S, Kotomin EA, Heifets E, Maier J, Eglitis RI, Borstel G (2005) Surf Sci 575(1–2):75.  https://doi.org/10.1016/j.susc.2004.11.008. http://linkinghub.elsevier.com/retrieve/pii/S0039602804014414
  331. 331.
    Wahl R, Vogtenhuber D, Kresse G (2008) Phys Rev B Condens Matter Mater Phys 78(10):104116.  https://doi.org/10.1103/PhysRevB.78.104116. https://link.aps.org/doi/10.1103/PhysRevB.78.104116
  332. 332.
    Kvyatkovskii OE, Karadag F, Mamedov A, Zakharov GA (2004) Phys Solid State 46(9):1717.  https://doi.org/10.1134/1.1799192. http://link.springer.com/10.1134/1.1799192
  333. 333.
    Zhao Q, Yan Z, Chen C, Chen J (2017) Chem Rev 117(15):10121.  https://doi.org/10.1021/acs.chemrev.7b00051. http://pubs.acs.org/doi/10.1021/acs.chemrev.7b00051
  334. 334.
    Zasada F, Piskorz W, Stelmachowski P, Kotarba A, Paul JF, Płociński T, Kurzydłowski KJ, Sojka Z (2011) J Phys Chem C 115(14):6423.  https://doi.org/10.1021/jp200581s
  335. 335.
    Lazzeri M, Thibaudeau P (2006) Phys Rev B Condens Matter Mater Phys 74(14):140301.  https://doi.org/10.1103/PhysRevB.74.140301. https://link.aps.org/doi/10.1103/PhysRevB.74.140301
  336. 336.
    Fang CM, de Wijs GA, Loong CK, de With G (2007) J Mater Chem 17(46):4908.  https://doi.org/10.1039/b706814j. http://xlink.rsc.org/?DOI=b706814j
  337. 337.
    López-Moreno S, Romero AH, Rodríguez-Hernandez P, Muñoz A (2009) High Press Res 29(4):573.  https://doi.org/10.1080/08957950903474635. http://www.tandfonline.com/doi/abs/10.1080/08957950903474635
  338. 338.
    Ono S, Brodholt JP, Price GD (2008) Phys Chem Miner 35(7):381.  https://doi.org/10.1007/s00269-008-0231-9. http://link.springer.com/10.1007/s00269-008-0231-9
  339. 339.
    Ding Y, Xu L, Chen C, Shen X, Suib SL (2008) J Phys Chem C 112(22):8177.  https://doi.org/10.1021/jp0773839. http://pubs.acs.org/doi/10.1021/jp0773839
  340. 340.
  341. 341.
    Xie X, Li Y, Liu ZQ, Haruta M, Shen W (2009) Nature 458(7239):746.  https://doi.org/10.1038/nature07877. http://www.nature.com/articles/nature07877
  342. 342.
    Xiao J, Kuang Q, Yang S, Xiao F, Wang S, Guo L (2013) Sci Rep 3(1):2300.  https://doi.org/10.1038/srep02300. http://www.nature.com/articles/srep02300
  343. 343.
    Hu L, Peng Q, Li Y (2008) J Am Chem Soc 130(48):16136.  https://doi.org/10.1021/ja806400e. http://pubs.acs.org/doi/abs/10.1021/ja806400e
  344. 344.
    Yu X, Huo CF, Li YW, Wang J, Jiao H (2012) Surf Sci 606(9–10):872.  https://doi.org/10.1016/j.susc.2012.02.003. http://linkinghub.elsevier.com/retrieve/pii/S0039602812000544
  345. 345.
    Zasada F, Piskorz W, Cristol S, Paul JF, Kotarba A, Sojka Z (2010) J Phys Chem C 114(50):22245.  https://doi.org/10.1021/jp109264b
  346. 346.
    Zasada F, Gryboś J, Indyka P, Piskorz W, Kaczmarczyk J, Sojka Z (2014) J Phys Chem C 118(33):19085.  https://doi.org/10.1021/jp503737p. http://pubs.acs.org/doi/abs/10.1021/jp503737p
  347. 347.
  348. 348.
    Maniak G, Stelmachowski P, Kotarba A, Sojka Z, Rico-Pérez V, Bueno-López A (2013) Appl Catal B Environ 136–137:302.  https://doi.org/10.1016/j.apcatb.2013.01.068. http://linkinghub.elsevier.com/retrieve/pii/S0926337313001045
  349. 349.
    Zasada F, Piskorz W, Sojka Z (2015) J Phys Chem C 119:33.  https://doi.org/10.1021/acs.jpcc.5b05136
  350. 350.
    Zasada F, Piskorz W, Janas J, Gryboś J, Indyka P, Sojka Z (2015) ACS Catal 5(11):6879.  https://doi.org/10.1021/acscatal.5b01900
  351. 351.
    Hashim AH, Zayed AOH, Zain SM, Lee VS, Said SM (2018) Appl Surf Sci 427:1090.  https://doi.org/10.1016/j.apsusc.2017.09.085. http://linkinghub.elsevier.com/retrieve/pii/S0169433217327344
  352. 352.
    Zasada F, Piskorz W, Janas J, Budiyanto E, Sojka Z (2017) J Phys Chem C 121(43):24128.  https://doi.org/10.1021/acs.jpcc.7b09597
  353. 353.
  354. 354.
    Zasada F, Gryboś J, Piskorz W, Sojka Z (2018) J Phys Chem C 122:5.  https://doi.org/10.1021/acs.jpcc.7b11869
  355. 355.
    Chen J, Selloni A (2012) Phys Rev B Condens Matter Mater Phys 85(8):085306.  https://doi.org/10.1103/PhysRevB.85.085306. https://link.aps.org/doi/10.1103/PhysRevB.85.085306
  356. 356.
    Vaz C, Wang HQ, Ahn C, Henrich V, Baykara M, Schwendemann T, Pilet N, Albers B, Schwarz U, Zhang L, Zhu Y, Wang J, Altman E (2009) Surf Sci 603(2):291.  https://doi.org/10.1016/j.susc.2008.11.022. http://linkinghub.elsevier.com/retrieve/pii/S0039602808008054
  357. 357.
    Chen D, Chen C, Baiyee ZM, Shao Z, Ciucci F (2015) Chem Rev 115(18):9869.  https://doi.org/10.1021/acs.chemrev.5b00073. http://pubs.acs.org/doi/10.1021/acs.chemrev.5b00073
  358. 358.
  359. 359.
    Zasada F, Janas J, Piskorz W, Gorczyńska M, Sojka Z (2017) ACS Catal 7(4):2853.  https://doi.org/10.1021/acscatal.6b03139
  360. 360.
    Uusi-Esko K, Rautama EL, Laitinen M, Sajavaara T, Karppinen M (2010) Chem Mater 22(23):6297.  https://doi.org/10.1021/cm102003y. http://pubs.acs.org/doi/abs/10.1021/cm102003y
  361. 361.
    Kaczmarczyk J, Zasada F, Janas J, Indyka P, Piskorz W, Kotarba A, Sojka Z (2016) ACS Catal 6(2):1235.  https://doi.org/10.1021/acscatal.5b02642
  362. 362.
    Omata K, Takada T, Kasahara S, Yamada M (1996) Appl Catal A Gen 146(2):255.  https://doi.org/10.1016/S0926-860X(96)00151-2. http://linkinghub.elsevier.com/retrieve/pii/S0926860X96001512
  363. 363.
    Yan L, Ren T, Wang X, Gao Q, Ji D, Suo J (2003) Catal Commun 4(10):505.  https://doi.org/10.1016/S1566-7367(03)00131-6. http://linkinghub.elsevier.com/retrieve/pii/S1566736703001316
  364. 364.
    Ohnishi C, Asano K, Iwamoto S, Chikama K, Inoue M (2007) Catal Today 120(2):145.  https://doi.org/10.1016/j.cattod.2006.07.042. http://linkinghub.elsevier.com/retrieve/pii/S0920586106004731
  365. 365.
    Asano K, Ohnishi C, Iwamoto S, Shioya Y, Inoue M (2008) Appl Catal B Environ 78(3–4):242.  https://doi.org/10.1016/j.apcatb.2007.09.016. http://linkinghub.elsevier.com/retrieve/pii/S0926337307002901
  366. 366.
    Wang HF, Kavanagh R, Guo YL, Guo Y, Lu G, Hu P (2012) J Catal 296:110.  https://doi.org/10.1016/j.jcat.2012.09.005. http://linkinghub.elsevier.com/retrieve/pii/S0021951712002849
  367. 367.
  368. 368.
    Xu XL, Yang E, Li JQ, Li Y, Chen WK (2009) Chemcatchem 1(3):384.  https://doi.org/10.1002/cctc.200900115
  369. 369.
    Hu W, Lan J, Guo Y, Cao XM, Hu P (2016) ACS Catal 6(8):5508.  https://doi.org/10.1021/acscatal.6b01080. http://pubs.acs.org/doi/10.1021/acscatal.6b01080
  370. 370.
  371. 371.
  372. 372.
    Zou CY, Ji W, Shen Z, Tang Q, Fan M (2018) Appl Surf Sci 442:778.  https://doi.org/10.1016/j.apsusc.2018.02.037. http://linkinghub.elsevier.com/retrieve/pii/S0169433218303805
  373. 373.
  374. 374.
    Shojaee K, Haynes BS, Montoya A (2017) Proc Combust Inst 36(3):4365.  https://doi.org/10.1016/j.proci.2016.06.100. http://linkinghub.elsevier.com/retrieve/pii/S1540748916301584
  375. 375.
    Shi X, Bernasek SL, Selloni A (2017) J Phys Chem C 121(7):3929.  https://doi.org/10.1021/acs.jpcc.6b12005. http://pubs.acs.org/doi/abs/10.1021/acs.jpcc.6b12005
  376. 376.
    Kondratenko EV, Pérez-Ramírez J (2007) Catal Today 121(3–4):197.  https://doi.org/10.1016/j.cattod.2006.08.066. http://linkinghub.elsevier.com/retrieve/pii/S092058610600589X
  377. 377.
    Yakovlev AL, Zhidomirov GM, van Santen RA (2001) Catal Lett 75(1/2):45.  https://doi.org/10.1023/A:1016692419859. http://link.springer.com/10.1023/A:1016692419859
  378. 378.
  379. 379.
    Scagnelli A, Valentin CD, Pacchioni G (2006) Surf Sci 600(2):386.  https://doi.org/10.1016/j.susc.2005.10.048. http://linkinghub.elsevier.com/retrieve/pii/S0039602805012264
  380. 380.
    Stelmachowski P, Maniak G, Kotarba A, Sojka Z (2009) Catal Commun 10(7):1062.  https://doi.org/10.1016/j.catcom.2008.12.057. http://linkinghub.elsevier.com/retrieve/pii/S1566736709000120
  381. 381.
    Maniak G, Stelmachowski P, Zasada F, Piskorz W, Kotarba A, Sojka Z (2011) Catal Today 176(1):369.  https://doi.org/10.1016/j.cattod.2010.11.043
  382. 382.
    Lu J, Song J, Niu H, Pan L, Zhang X, Wang L, Zou JJ (2016) Appl Surf Sci 371:61.  https://doi.org/10.1016/j.apsusc.2016.02.209. http://linkinghub.elsevier.com/retrieve/pii/S0169433216303968
  383. 383.
    Si C, Wang Y, Zhang J, Gao H, Lv L, Han L, Zhang Z (2016) Nano Energy 23:105.  https://doi.org/10.1016/j.nanoen.2016.03.012. http://linkinghub.elsevier.com/retrieve/pii/S2211285516300234
  384. 384.
    Si C, Zhang Y, Zhang C, Gao H, Ma W, Lv L, Zhang Z (2017) Electrochim Acta 245:829.  https://doi.org/10.1016/j.electacta.2017.06.029. http://linkinghub.elsevier.com/retrieve/pii/S0013468617312677
  385. 385.
    Obalová L, Karásková K, Jirátová K, Kovanda F (2009) Appl Catal B Environ 90(1–2):132.  https://doi.org/10.1016/j.apcatb.2009.03.002. http://linkinghub.elsevier.com/retrieve/pii/S0926337309000939
  386. 386.
    PalDey S, Gedevanishvili S, Zhang W, Rasouli F (2005) Appl Catal B Environ 56(3):241.  https://doi.org/10.1016/j.apcatb.2004.09.013. http://linkinghub.elsevier.com/retrieve/pii/S0926337304005569
  387. 387.
    Wang S, Ding Z, Wang X (2015) Chem Commun 51(8):1517.  https://doi.org/10.1039/C4CC07225A. http://xlink.rsc.org/?DOI=C4CC07225A
  388. 388.
    Walter MG, Warren EL, McKone JR, Boettcher SW, Mi Q, Santori EA, Lewis NS (2010) Chem Rev 110(11):6446.  https://doi.org/10.1021/cr1002326. http://pubs.acs.org/doi/abs/10.1021/cr1002326
  389. 389.
    Kang D, Kim TW, Kubota SR, Cardiel AC, Cha HG, Choi KS (2015) Chem Rev 115(23):12839.  https://doi.org/10.1021/acs.chemrev.5b00498. http://pubs.acs.org/doi/10.1021/acs.chemrev.5b00498
  390. 390.
    Martin A, Luck F, Armbruster U, Patria L, Radnik J, Schneider M (2005) Topics Catal 33(1–4):155.  https://doi.org/10.1007/s11244-005-2522-4. http://link.springer.com/10.1007/s11244-005-2522-4
  391. 391.
    Liu P, He H, Wei G, Liang X, Qi F, Tan F, Tan W, Zhu J, Zhu R (2016) Appl Catal B Environ 182:476.  https://doi.org/10.1016/j.apcatb.2015.09.055. http://linkinghub.elsevier.com/retrieve/pii/S0926337315301818
  392. 392.
    Chen J, Shi W, Yang S, Arandiyan H, Li J (2011) J Phys Chem C 115(35):17400.  https://doi.org/10.1021/jp202958b. http://pubs.acs.org/doi/10.1021/jp202958b
  393. 393.
  394. 394.
    Sun S, Zhou Y, Hu B, Zhang Q, Xu ZJ (2016) J Electrochem Soc 163(2):H99.  https://doi.org/10.1149/2.0761602jes. http://jes.ecsdl.org/lookup/doi/10.1149/2.0761602jes
  395. 395.
    Zhu X, Zhao H, Niu X, Liu T, Shi L, Lan M (2016) Microchim Acta 183(8):2431.  https://doi.org/10.1007/s00604-016-1887-3. http://link.springer.com/10.1007/s00604-016-1887-3
  396. 396.
    Periyasamy S, Subramanian P, Levi E, Aurbach D, Gedanken A, Schechter A (2016) ACS Appl Mater Interf 8(19):12176.  https://doi.org/10.1021/acsami.6b02491. http://pubs.acs.org/doi/10.1021/acsami.6b02491
  397. 397.
    Alizadeh-Gheshlaghi E, Shaabani B, Khodayari A, Azizian-Kalandaragh Y, Rahimi R (2012) Powder Technol 217:330.  https://doi.org/10.1016/j.powtec.2011.10.045. http://linkinghub.elsevier.com/retrieve/pii/S0032591011005882
  398. 398.
    Cui B, Lin H, Liu YZ, Li JB, Sun P, Zhao XC, Liu CJ (2009) J Phys Chem C 113(32):14083.  https://doi.org/10.1021/jp900028t. https://pubs.acs.org/doi/10.1021/jp900028t
  399. 399.
    Blum RP, Niehus H, Hucho C, Fortrie R, Ganduglia-Pirovano MV, Sauer J, Shaikhutdinov S, Freund HJ (2007) Phys Rev Lett 99(22):226103.  https://doi.org/10.1103/PhysRevLett.99.226103. https://link.aps.org/doi/10.1103/PhysRevLett.99.226103
  400. 400.
  401. 401.
  402. 402.
    Bahlawane N, Lenoble D (2014) Chem Vapor Depos 20(7-8-9):299.  https://doi.org/10.1002/cvde.201400057. http://doi.wiley.com/10.1002/cvde.201400057
  403. 403.
    Gavrilyuk A, Tritthart U, Gey W (2011) Phys Chem Chem Phys 13(20):9490.  https://doi.org/10.1039/c0cp02201b. http://xlink.rsc.org/?DOI=c0cp02201b
  404. 404.
  405. 405.
    Yang J, Lan T, Liu J, Song Y, Wei M (2013) Electrochim Acta 105:489.  https://doi.org/10.1016/j.electacta.2013.05.023. http://linkinghub.elsevier.com/retrieve/pii/S0013468613009274
  406. 406.
    Perera SD, Rudolph M, Mariano RG, Nijem N, Ferraris JP, Chabal YJ, Balkus KJ (2013) Nano Energy 2(5):966.  https://doi.org/10.1016/j.nanoen.2013.03.018. http://linkinghub.elsevier.com/retrieve/pii/S2211285513000530
  407. 407.
    Yeager MP, Du W, Bishop B, Sullivan M, Xu W, Su D, Senanayake SD, Hanson J, Teng X (2013) Chem Sus Chem 6(12):2231.  https://doi.org/10.1002/cssc.201300480. http://doi.wiley.com/10.1002/cssc.201300480
  408. 408.
  409. 409.
    Glynn C, Thompson D, Paez J, Collins G, Benavente E, Lavayen V, Yutronic N, Holmes JD, González G, O’Dwyer C (2013) J Mater Chem C 1(36):5675.  https://doi.org/10.1039/c3tc31104j. http://xlink.rsc.org/?DOI=c3tc31104j
  410. 410.
    Chebout K, Iratni A, Bouremana A, Sam S, Keffous A, Gabouze N (2013) Solid State Ion 253:164.  https://doi.org/10.1016/j.ssi.2013.09.055. http://linkinghub.elsevier.com/retrieve/pii/S0167273813004694
  411. 411.
    Modafferi V, Panzera G, Donato A, Antonucci P, Cannilla C, Donato N, Spadaro D, Neri G (2012) Sens Actuators B Chem 163(1):61.  https://doi.org/10.1016/j.snb.2012.01.007. http://linkinghub.elsevier.com/retrieve/pii/S0925400512000305
  412. 412.
    Sobolev VI, Danilevich EV, Koltunov KY (2013) Kinet Catal 54(6):730.  https://doi.org/10.1134/S0023158413060128. http://link.springer.com/10.1134/S0023158413060128
  413. 413.
    Abazari R, Sanati S, Saghatforoush LA (2014) Chem Eng J 236:82.  https://doi.org/10.1016/j.cej.2013.09.056. http://linkinghub.elsevier.com/retrieve/pii/S1385894713012497
  414. 414.
    Enjalbert R, Galy J (1986) Acta Crystallogr Sect C Cryst Struct Commun 42(11):1467.  https://doi.org/10.1107/S0108270186091825. http://scripts.iucr.org/cgi-bin/paper?S0108270186091825
  415. 415.
    Wachs IE (2013) Dalton Trans 42(33):11762.  https://doi.org/10.1039/c3dt50692d. http://xlink.rsc.org/?DOI=c3dt50692d
  416. 416.
    Carrero CA, Schloegl R, Wachs IE, Schomaecker R (2014) ACS Catal 4(10):3357.  https://doi.org/10.1021/cs5003417. http://pubs.acs.org/doi/10.1021/cs5003417
  417. 417.
  418. 418.
  419. 419.
  420. 420.
    Hermann K, Witko M, Druzinic R, Tokarz R (2001) Appl Phys A Mater Sci Process 72(4):429.  https://doi.org/10.1007/s003390100756. http://link.springer.com/10.1007/s003390100756
  421. 421.
    Haber J (1992) in new developments. In: Ruiz P, Delmon B (eds) Selective oxidation by heterogeneous catalysis. Elsevier Science Publishers B.V, Amsterdam, pp 279–304Google Scholar
  422. 422.
    Tilley RJD (1983) Surface properties and catalysis by non-metals. D. Reidel Publishing Company, Dordrecht/Boston/Lancaster.  https://doi.org/10.1007/978-94-009-7160-8. http://link.springer.com/10.1007/978-94-009-7160-8
  423. 423.
    Bartholomew CH, Farrauto RJ (2010) Fundamentals of industrial catalytic processes 2nd edn. Wiley Inc., Hoboken, NJ, USA.  https://doi.org/10.1002/9780471730071. http://doi.wiley.com/10.1002/9780471730071
  424. 424.
  425. 425.
  426. 426.
    Weissermel K, Arpe HJ (1978) Industrial organic chemistry: important raw materials and intermediates. Verlag Chemie, Weinheim, New YorkGoogle Scholar
  427. 427.
    Kong M, Liu Q, Wang X, Ren S, Yang J, Zhao D, Xi W, Yao L (2015) Catal Commun 72:121.  https://doi.org/10.1016/j.catcom.2015.09.029. http://linkinghub.elsevier.com/retrieve/pii/S156673671530090X
  428. 428.
  429. 429.
    Lomnicki S, Lichtenberger J, Xu Z, Waters M, Kosman J, Amiridis MD (2003) Appl Catal B Environ 46(1):105.  https://doi.org/10.1016/S0926-3373(03)00215-7. http://linkinghub.elsevier.com/retrieve/pii/S0926337303002157
  430. 430.
    Høj M, Jensen AD, Grunwaldt JD (2013) Appl Catal A: Gen 451:207.  https://doi.org/10.1016/j.apcata.2012.09.037. http://linkinghub.elsevier.com/retrieve/pii/S0926860X12006308
  431. 431.
    Due-Hansen J, Boghosian S, Kustov A, Fristrup P, Tsilomelekis G, Ståhl K, Christensen CH, Fehrmann R (2007) J Catal 251(2):459.  https://doi.org/10.1016/j.jcat.2007.07.016. http://linkinghub.elsevier.com/retrieve/pii/S0021951707002862
  432. 432.
    Kempf JY, Silvi B, Dietrich A, Catlow CRA, Maigret B (1993) Chem Mater 5(5):641.  https://doi.org/10.1021/cm00029a011. http://pubs.acs.org/doi/abs/10.1021/cm00029a011
  433. 433.
    Yin X, Fahmi A, Endou A, Miura R, Gunji I, Yamauchi R, Kubo M, Chatterjee A, Miyamoto A (1998) Appl Surf Sci 130–132:539.  https://doi.org/10.1016/S0169-4332(98)00111-1. http://linkinghub.elsevier.com/retrieve/pii/S0169433298001111
  434. 434.
    Chakrabarti A, Hermann K, Druzinic R, Witko M, Wagner F, Petersen M (1999) Phys Rev B 59(16):10583.  https://doi.org/10.1103/PhysRevB.59.10583. https://link.aps.org/doi/10.1103/PhysRevB.59.10583
  435. 435.
    Vyboishchikov SF, Sauer J (2001) J Phys Chem A 105(37):8588.  https://doi.org/10.1021/jp012294w. http://pubs.acs.org/doi/abs/10.1021/jp012294w
  436. 436.
    Costa AD, Mathieu C, Barbaux Y, Poelman H, Dalmai-Vennik G, Fiermans L (1997) Surf Sci 370(2–3):339.  https://doi.org/10.1016/S0039-6028(96)00956-9. http://linkinghub.elsevier.com/retrieve/pii/S0039602896009569
  437. 437.
    Goschke RA, Vey K, Maier M, Walter U, Goering E, Klemm M, Horn S (1996) Surf Sci 348(3):305.  https://doi.org/10.1016/0039-6028(95)00998-1. http://linkinghub.elsevier.com/retrieve/pii/0039602895009981
  438. 438.
    Asmis KR, Santambrogio G, Brümmer M, Sauer J (2005) Angew Chem Int Edn 44(20):3122.  https://doi.org/10.1002/anie.200462894. http://doi.wiley.com/10.1002/anie.200462894
  439. 439.
    Calatayud M, Andrés J, Beltrán A (2001) J Phys Chem A 105(42):9760.  https://doi.org/10.1021/jp011535x. http://pubs.acs.org/doi/abs/10.1021/jp011535x
  440. 440.
  441. 441.
    Avdeev VI, Zhidomirov GM (2005) J Struct Chem 46(4):577.  https://doi.org/10.1007/s10947-006-0174-2. http://link.springer.com/10.1007/s10947-006-0174-2
  442. 442.
    Alexopoulos K, Hejduk P, Witko M, Reyniers MF, Marin GB (2010) J Phys Chem C 114(7):3115.  https://doi.org/10.1021/jp910685z. http://pubs.acs.org/doi/10.1021/jp910685z
  443. 443.
    Avdeev VI, Tapilin VM (2009) J Phys Chem C 113(33):14941.  https://doi.org/10.1021/jp904211a. http://pubs.acs.org/doi/10.1021/jp904211a
  444. 444.
    Deo G, Wachs I, Haber J (1994) Crit Rev Surf Chem 4:141Google Scholar
  445. 445.
  446. 446.
    Avdeev VI, Tapilin VM (2010) J Phys Chem C 114(8):3609.  https://doi.org/10.1021/jp911145c. http://pubs.acs.org/doi/10.1021/jp911145c
  447. 447.
    Todorova TK, Döbler J, Sierka M, Sauer J (2009) J Phys Chem C 113(19):8336.  https://doi.org/10.1021/jp811387z. http://pubs.acs.org/doi/10.1021/jp811387z
  448. 448.
  449. 449.
  450. 450.
  451. 451.
    Bielanski A, Haber J (1990) Oxygen in catalysis. Marcel Dekker, New York, NYGoogle Scholar
  452. 452.
    Sauer J, Döbler J (2004) Dalton Trans (19):3116.  https://doi.org/10.1039/B402873B. http://xlink.rsc.org/?DOI=B402873B
  453. 453.
    Magg N, Giorgi JB, Schroeder T, Bäumer M, Freund HJ (2002) J Phys Chem B 106(34):8756.  https://doi.org/10.1021/jp0204556. http://pubs.acs.org/doi/abs/10.1021/jp0204556
  454. 454.
    Ganduglia-Pirovano MV, Sauer J (2005) J Phys Chem B 109(1):374.  https://doi.org/10.1021/jp046233k. http://dx.doi.org/10.1021/jp046233k
  455. 455.
    Słoczyński J, Grabowski R, Kozłowska A, Tokarz-Sobieraj R, Witko M (2007) J Mol Catal A Chem 277(1–2):27.  https://doi.org/10.1016/j.molcata.2007.07.022. http://linkinghub.elsevier.com/retrieve/pii/S1381116907004190
  456. 456.
    Goclon J, Grybos R, Witko M, Hafner J (2009) Phys Rev B 79(7):075439.  https://doi.org/10.1103/PhysRevB.79.075439. https://link.aps.org/doi/10.1103/PhysRevB.79.075439
  457. 457.
    Gilardoni F, Weber J, Baiker A (1997) J Phys Chem A 101(34):6069.  https://doi.org/10.1021/jp9701606. http://pubs.acs.org/doi/abs/10.1021/jp9701606
  458. 458.
    Soyer S, Uzun A, Senkan S, Onal I (2006) Catal Today 118(3–4 SPEC. ISS.), 268.  https://doi.org/10.1016/j.cattod.2006.07.033. http://linkinghub.elsevier.com/retrieve/pii/S0920586106004433
  459. 459.
    Anstrom M, Dumesic J, Topsøe NY (2002) Catal Lett 78(1–4):281.  https://doi.org/10.1023/A:1014996215585
  460. 460.
  461. 461.
    Szaleniec M, Drzewiecka-Matuszek A, Witko M, Hejduk P (2013) J Mol Model 19(10):4487.  https://doi.org/10.1007/s00894-013-1951-4. http://link.springer.com/10.1007/s00894-013-1951-4
  462. 462.
    Gruber M, Hermann K (2013) J Chem Phys 139(24):244701.  https://doi.org/10.1063/1.4849556. http://aip.scitation.org/doi/10.1063/1.4849556
  463. 463.
    Engeser M, Schröder D, Schwarz H (2005) Chem Eur J 11(20):5975.  https://doi.org/10.1002/chem.200401352. http://doi.wiley.com/10.1002/chem.200401352
  464. 464.
    Gauld JW, Radom L (1997) J Am Chem Soc 119(41):9831.  https://doi.org/10.1021/ja970785h. http://pubs.acs.org/doi/abs/10.1021/ja970785h
  465. 465.
    Göbke D, Romanyshyn Y, Guimond S, Sturm JM, Kuhlenbeck H, Döbler J, Reinhardt U, Ganduglia-Pirovano MV, Sauer J, Freund HJ (2009) Angew Chem Int Edn 48(20):3695.  https://doi.org/10.1002/anie.200805618. http://doi.wiley.com/10.1002/anie.200805618

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Faculty of ChemistryJagiellonian UniversityKrakówPoland

Personalised recommendations