Advertisement

Maverick Views and Problems

  • Tamás Sándor BiróEmail author
  • Antal Jakovác
Chapter
Part of the SpringerBriefs in Physics book series (SpringerBriefs in Physics)

Abstract

In this last chapter we review a few selected applications of the methods discussed previously. First a realization of an oscillator bath with thermalizing effect is treated for a pure non-Abelian gluon plasma. This is followed by a numerical study of the distribution of local energy packets. Finally, an in-depth study of an exactly solvable model Lagrangian will demonstrate how the spectral function view resolves Gibbs’ paradox in a natural way, and how this can be used for a simulation of the equation of state obtained in large scale lattice QCD studies.

References

  1. 1.
    T.S. Biró, S.G. Matinyan, B. Müller, Chaos in Gauge Field Theory (World Scientific, Singapore, 1985)zbMATHGoogle Scholar
  2. 2.
    S.G. Matinyan, G.K. Savvidy, N.G. Ter-Arutyunyuan-Savvidy, Classical Yang-Mills mechanics, nonlinear color oscillations. Sov. Phys. JETP 80, 830 (1981)MathSciNetGoogle Scholar
  3. 3.
    S.G. Matinyan, B. Müller, Quantum fluctuations and dynamical chaos: an effective potential approach. Found. Phys. 27, 1237 (1997)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    T.S. Biró, S.G. Matinyan, B. Müller, Chaos driven by soft-hard mode coupling in thermal Yang-Mills theory. Phys. Lett. B 362, 29 (1995)ADSCrossRefGoogle Scholar
  5. 5.
    CMS Collaboration, Charged particle multiplicity. JHEP 08, 141 (2011)Google Scholar
  6. 6.
    CMS Collaboration, Elliptic flow and low-pt spectra. Phys. Rev. C 87, 014902 (2013)Google Scholar
  7. 7.
    CMS Collaboration, Nuclear effects in transverse momentum spectra of charged particles in pPb collisions at \(\sqrt{s_{NN}}=\) 5.02 TeV. EPJ C 75, 237 (2015)Google Scholar
  8. 8.
    ATLAS Collaboration, Measurement of charged-particle spectra in Pb\(+\)Pb and pPb collisons at \(\sqrt{s_{NN}}=~2.76\) TeV with the ATLAS detector at the LHC. JHEP 09, 050 (2015)Google Scholar
  9. 9.
    ALICE Collaboration, Pseudorapidity and transverse-momentum distributions of charged particles in proton–proton collisions at \(\sqrt{s}=\) 13 TeV. Phys. Lett. B 753, 319 (2016)Google Scholar
  10. 10.
    ALICE Collaboration, Energy dependence of the transverse momentum distribution of charged particles in pp collisions measured by ALICE. APJ C 73, 2662 (2013)Google Scholar
  11. 11.
    R. Hagedorn, Nuovo Cimento Suppl. 3, 147 (1965)Google Scholar
  12. 12.
    V. Pareto, La courbe de la répartition de la richesse (Orig. pub. 1896), in Œuvres complètes de Vilfredo Pareto, ed. by G. Busino (Librairie Droz, Geneva, 1965)Google Scholar
  13. 13.
    R. Koch, Living the 80/20 Way: Work Less, Worry Less, Succeed More, Enjoy More (Nicholas Bearley Publishing, London, 2004)Google Scholar
  14. 14.
    W.J. Reed, The Pareto, Zipf and other power laws. Econ. Lett. 74, 15 (2001)CrossRefGoogle Scholar
  15. 15.
    C. Tsallis, Introduction to Nonextensive Statistical Mechanics (Springer, Berlin, 2009)Google Scholar
  16. 16.
    C. Tsallis, Nonadditive entropy: the concept and its use. EPJ A 40, 257 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    C.-Y. Wong, G. Wilk, L.J.L. Cirto, C. Tsallis, From QCD-based hard-scattering to nonextensive statistical mechanical description of transverse momentum spectra in high-energy \(pp\) and \(p\overline{p}\) collisions. Phys. Rev. D 91, 114027 (2015)Google Scholar
  18. 18.
    M. Biyajima, T. Mizoguchi, N. Nakajima, N. Suzuki, G. Wilk, Modified Hagedorn formula including temperature fluctuation – estimation of temperatures at RHIC experiments. EPJ C 48, 597 (2006)ADSGoogle Scholar
  19. 19.
    T.S. Biro, Z. Schram, L. Jenkovszky, Entropy production during hadronization of a quark-gluon plasma. EPJ A 54, 17 (2018)ADSCrossRefGoogle Scholar
  20. 20.
    M.M. Homor, A. Jakovac, Particle yields from numerical simulations. Phys. Rev. D 97, 074504 (2018)ADSCrossRefGoogle Scholar
  21. 21.
    M. Gyulassy, M. Plümer, Jet quenching in dense matter. Phys. Lett. B 243, 432 (1990)ADSCrossRefGoogle Scholar
  22. 22.
    X.N. Wang, M. Gyulassy, Gluon shadowing and jet quenching in A\(+\)A collisions at \(\sqrt{s}=\) 200 GeV. Phys. Rev. Lett. 68, 1480 (1992)ADSCrossRefGoogle Scholar
  23. 23.
    X.N. Wang, Z. Huang, I. Sarcevic, Jet quenching in opposite direction of a tagged photon in high-energy heavy-ion collisions. Phys. Rev. Lett. 77, 231 (1996)ADSCrossRefGoogle Scholar
  24. 24.
    Z.B. Kang, I. Vitev, H. Xing, Vector-boson-tagged jet production in heavy ion collisions at energies available at the CERN Large Hadron Collider. Phys. Rev. C 96, 014912 (2017)ADSCrossRefGoogle Scholar
  25. 25.
    B. Müller, The Physics of the Quark Gluon Plasma. Springer Lecture Notes, vol. 225 (Springer, Berlin, 1985)Google Scholar
  26. 26.
    C.E. DeTar, J.F. Donoghue, Bag models of hadrons. Ann. Rev. Nucl. Part. Sci. 33, 235 (1983)ADSCrossRefGoogle Scholar
  27. 27.
    Y. Aoki, Z. Fodor, S.D. Katz, K.K. Szabo, The equation of state in lattice QCD: with physical quark masses towards the continuum limit. JHEP 2006(01), 089 (2006)CrossRefGoogle Scholar
  28. 28.
    M. Creutz, Phase diagrams for coupled spin-gauge systems. Phys. Rev. D 21, 1006 (1980)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    H.J. Rothe, Lattice Gauge Theories. World Scientific Lecture Notes in Physics, vol. 82, 4th edn. (2012)Google Scholar
  30. 30.
    A. Jakovac, A. Patkos, Resummation and Renormalization in Effective Theories of Particle Physics. Lecture Notes in Physics, vol. 912 (Springer, Berlin, 2016)CrossRefGoogle Scholar
  31. 31.
    A. Jakovac, Representation of spectral functions and thermodynamics. Phys. Rev. D 86, 085007 (2012)ADSCrossRefGoogle Scholar
  32. 32.
    A. Jakovac, Hadron melting and QCD thermodynamics. Phys. Rev. D 88, 065012 (2013)ADSCrossRefGoogle Scholar
  33. 33.
    T.S. Biro, A. Jakovac, QCD above \(T_{\rm c}\): hadrons, partons and the continuum. Phys. Rev. D 90, 094029 (2014)ADSCrossRefGoogle Scholar
  34. 34.
    T.S. Biro, A. Jakovac, Z. Schram, Nuclear and quark matter at high temperature. EPJ A 53, 52 (2017)ADSCrossRefGoogle Scholar
  35. 35.
    F. Karsch, K. Redlich, A. Tawfik, Thermodynamics at nonzero baryon number density: a comparison of lattice and hadron resonance gas model. Phys. Lett. B 571, 67 (2003)ADSCrossRefGoogle Scholar
  36. 36.
    A. Tawfik, QCD phase diagram: a comparison of lattice and hadron resonance gas model. Phys. Rev. D 71, 054502 (2005)ADSCrossRefGoogle Scholar
  37. 37.
    V.V. Begun, M.I. Gorenstein, M. Hauer, V.P. Konchakovski, O.S. Zozulya, Multiplicity fluctuations in hadron-resonance gas. Phys. Rev. C 74, 044903 (2006)ADSCrossRefGoogle Scholar
  38. 38.
    T. Steinert, W. Cassing, Covariant interacting hadron-resonance gas model. Phys. Rev. C 98, 014908 (2018)ADSCrossRefGoogle Scholar
  39. 39.
    P. Huovinen, P. Petreczky, Hadron resonance gas with repulsive interactions. J. Phys. Conf. Ser. 1070, 012004 (2018)CrossRefGoogle Scholar

Copyright information

© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.H.A.S. Wigner Research Centre for PhysicsBudapestHungary
  2. 2.Institute of PhysicsRoland Eötvös UniversityBudapestHungary

Personalised recommendations