Advertisement

Quantum Uncertainty and Unruh Temperature

  • Tamás Sándor BiróEmail author
  • Antal Jakovác
Chapter
Part of the SpringerBriefs in Physics book series (SpringerBriefs in Physics)

Abstract

Temperature as a measure of fluctuations is well known among physicists [1, 2]. More specifically, its value—measured in Boltzmann’s constant units—is connected to the variance of the energy (after subtraction of the collective motion), \(\Delta E \sim k_\mathrm{B} T\). Usually, only the statistical variance is considered, this being due to internal atomic motion, according to the kinetic theory of heat [3, 4]. In particle physics the analog phenomenon is the motion of elementary particles in an ensemble, as in the kind of hot fireball constructed in high energy accelerator experiments [5]. In field theory, if enough energy is present, the number of particles cannot be fixed, and this quantity also fluctuates in a way that depends on further circumstances. A repeated collision event—even at the same accelerator energy—will produce different numbers of hadrons each time. Here the energy per particle fluctuates due to the fluctuating number of particles and also due to the fluctuating individual kinetic energies of those particles [6, 7]

References

  1. 1.
    H.B. Callen, Thermodynamics and Introduction to Thermostatistics (Wiley, New York, 1985)Google Scholar
  2. 2.
    H.J.D. Miller, J. Anders, Energy-temperature uncertainty relation in quantum thermodynamics. Nat. Commun. 9, 2203 (2018)ADSCrossRefGoogle Scholar
  3. 3.
    B.H. Lavenda, Statistical Physics: A Probabilistic Approach (Wiley Interscience, New York, 1991)Google Scholar
  4. 4.
    R.L. Liboff, Kinetic Theory: Classical, Quantum and Relativistic Descriptions (Springer, Berlin, 2006)Google Scholar
  5. 5.
    W. Florkowski, Phenomenology of Ultra-Relativistic Heavy-Ion Collisions (World Scientific, Singapore, 2010)Google Scholar
  6. 6.
    L. Stodolsky, Temperature fluctuations in multiparticle production. Phys. Rev. Lett. 75, 1044 (1995)ADSCrossRefGoogle Scholar
  7. 7.
    T.S. Biro, Z. Schram, L. Jenkovszky, Entropy production during hadronization of a quark-gluon plasma. EPJ A 54, 17 (2018)ADSCrossRefGoogle Scholar
  8. 8.
    N.D. Mermin, Could Feynman have said this? Phys. Today 57, 10 (2004)ADSGoogle Scholar
  9. 9.
    W. Heisenberg, The physical content of quantum kinematics and mechanics. Z. Phys. 43, 172 (1927)ADSCrossRefGoogle Scholar
  10. 10.
    M. Osawa, Universally valid reformulation of the Heisenberg uncertainty principle on noise and disturbance measurements. Phys. Rev. A 67, 042105 (2003)ADSCrossRefGoogle Scholar
  11. 11.
    J.S. Briggs, A derivation of the time-energy uncertainty relation. J. Phys. Conf. Ser. 99, 012002 (2008)CrossRefGoogle Scholar
  12. 12.
    P. Busch, P.P. Lahti, R. Werner, Proof of Heisenberg’s error-disturbance relation. Phys. Rev. Lett. 111, 160405 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    D.M. Appleby, Quantum errors and disturbances: response to Busch, Lahti and Werner. Entropy 18, 174 (2016)ADSCrossRefGoogle Scholar
  14. 14.
    Erwin Schrödinger, An undulatory theory of the mechanics of atoms and molecules. Phys. Rev. 28, 1049 (1926)ADSCrossRefGoogle Scholar
  15. 15.
    Erwin Schrödinger, Collected Papers on Wave Mechanics (AMS Chelsea Publishing, New York, 1982)Google Scholar
  16. 16.
    E. Schrödinger, Quantisierung als Eigenwertproblem (Erste Mitteilung). Ann. Phys. 79, 361 (1926)ADSCrossRefGoogle Scholar
  17. 17.
    E. Schrödinger, Quantisierung als Eigenwertproblem (Zweite Mitteilung). Ann. Phys. 79, 488 (1926)Google Scholar
  18. 18.
    F. Zang, Matrix Theory: Basic Results and Techniques (Springer, Berlin, 2011)Google Scholar
  19. 19.
    N. Young, An Introduction to Hilbert Space (Cambridge University Press, Cambridge, 1988)Google Scholar
  20. 20.
    W.G. Unruh, Notes on black hole evaporation, Phys. Rev. D 14, 870 (1976)ADSCrossRefGoogle Scholar
  21. 21.
    W.G. Unruh, R.M. Wald, What happens when an accelerating observer detects a Rindler particle. Phys. Rev. D 29, 1047 (1984)ADSCrossRefGoogle Scholar
  22. 22.
    L.C.B. Crispino, A. Higuchi, G.E.A. Matsas, The Unruh effect and its applications. Rev. Mod. Phys. 80, 787 (2008)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    T.S. Biro, Is There a Temperature? Fundamental Theories of Physics 1014 (Springer, Berlin, 2011)Google Scholar
  24. 24.
    Niels Bohr, On the constitution of atoms and molecules. Philos. Mag. 26, 1 (1913)ADSCrossRefGoogle Scholar

Copyright information

© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.H.A.S. Wigner Research Centre for PhysicsBudapestHungary
  2. 2.Institute of PhysicsRoland Eötvös UniversityBudapestHungary

Personalised recommendations